Skip to Content
Math401Math 401, Fall 2025: Thesis notesMath 401, Fall 2025: Thesis notes, S3, Coherent states and POVMs

Math 401, Fall 2025: Thesis notes, S3, Coherent states and POVMs

This section should extends on the reading for

Holomorphic methods in analysis and mathematical physics

Bargmann space (original)

Also known as Segal-Bargmann space or Bargmann-Fock space.

It is the space of holomorphic functions that is square-integrable over the complex plane.

Section belows use Remarks on a Hilbert Space of Analytic Functions  as the reference.

A family of Hilbert spaces, Fn(n=1,2,3,)\mathfrak{F}_n(n=1,2,3,\cdots), is defined as follows:

The element of Fn\mathfrak{F}_n are entire analytic functions in complex Euclidean space Cn\mathbb{C}^n. f:CnCFnf:\mathbb{C}^n\to \mathbb{C}\in \mathfrak{F}_n

Let f,gFnf,g\in \mathfrak{F}_n. The inner product is defined by

f,g=Cnf(z)g(z)dμn(z)\langle f,g\rangle=\int_{\mathbb{C}^n} \overline{f(z)}g(z) d\mu_n(z)

Let zk=xk+iykz_k=x_k+iy_k be the complex coordinates of zCnz\in \mathbb{C}^n.

The measure μn\mu_n is the defined by

dμn(z)=πnexp(i=1nzi2)k=1ndxkdykd\mu_n(z)=\pi^{-n}\exp(-\sum_{i=1}^n |z_i|^2)\prod_{k=1}^n dx_k dy_k

Example

For n=2n=2,

F2= space of entire analytic functions on C2C\mathfrak{F}_2=\text{ space of entire analytic functions on } \mathbb{C}^2\to \mathbb{C} f,g=C2f(z)g(z)dμ(z),z=(z1,z2)\langle f,g\rangle=\int_{\mathbb{C}^2} \overline{f(z)}g(z) d\mu(z),z=(z_1,z_2) dμ2(z)=1π2exp(z2)dx1dy1dx2dy2d\mu_2(z)=\frac{1}{\pi^2}\exp(-|z|^2)dx_1 dy_1 dx_2 dy_2

so that ff belongs to Fn\mathfrak{F}_n if and only if f,f<\langle f,f\rangle<\infty.

This is absolutely terrible early texts, we will try to formulate it in a more modern way.

The section belows are from the lecture notes Holomorphic method in analysis and mathematical physics 

Complex function spaces

Holomorphic spaces

Let UU be a non-empty open set in Cd\mathbb{C}^d. Let H(U)\mathcal{H}(U) be the space of holomorphic (or analytic) functions on UU.

Let fH(U)f\in \mathcal{H}(U), note that by definition of holomorphic on several complex variables, ff is continuous and holomorphic in each variable with the other variables fixed.

Let α\alpha be a continuous, strictly positive function on UU.

HL2(U,α)={FH(U):UF(z)2α(z)dμ(z)<},\mathcal{H}L^2(U,\alpha)=\left\{F\in \mathcal{H}(U): \int_U |F(z)|^2 \alpha(z) d\mu(z)<\infty\right\},

where μ\mu is the Lebesgue measure on Cd=R2d\mathbb{C}^d=\mathbb{R}^{2d}.

Theorem of holomorphic spaces

  1. For all zUz\in U, there exists a constant czc_z such that F(z)2czFL2(U,α)2|F(z)|^2\le c_z \|F\|^2_{L^2(U,\alpha)} for all FHL2(U,α)F\in \mathcal{H}L^2(U,\alpha).
  2. HL2(U,α)\mathcal{H}L^2(U,\alpha) is a closed subspace of L2(U,α)L^2(U,\alpha), and therefore a Hilbert space.

Proof

First we check part 1.

Let z=(z1,z2,,zd)U,zkCz=(z_1,z_2,\cdots,z_d)\in U, z_k\in \mathbb{C}. Let Ps(z)P_s(z) be the “polydisk”of radius ss centered at zz defined as

Ps(z)={vCd:vkzk<s,k=1,2,,d}P_s(z)=\{v\in \mathbb{C}^d: |v_k-z_k|<s, k=1,2,\cdots,d\}

If zUz\in U, we cha choose ss small enough such that Ps(z)U\overline{P_s(z)}\subset U so that we can claim that F(z)=(πs2)dPs(z)F(v)dμ(v)F(z)=(\pi s^2)^{-d}\int_{P_s(z)}F(v)d\mu(v) is well-defined.

If d=1d=1. Then by Taylor series at v=zv=z, since FF is analytic in UU we have

F(v)=F(z)+k=1an(vz)nF(v)=F(z)+\sum_{k=1}^{\infty}a_n(v-z)^n

Since the series converges uniformly to FF on the compact set Ps(z)\overline{P_s(z)}, we can interchange the integral and the sum.

Using polar coordinates with origin at zz, (vz)n=rneinθ(v-z)^n=r^n e^{in\theta} where r=vz,θ=arg(vz)r=|v-z|, \theta=\arg(v-z).

For n1n\geq 1, the integral over Ps(z)P_s(z) (open disk) is zero (by Cauchy’s theorem).

So,

F(z)=(πs2)1Ps(z)F(z)+k=1an(vz)ndμ(v)=(πs2)1F(z)+(πs2)1k=1anPs(z)rneinθdμ(v)=(πs2)1F(z)\begin{aligned} F(z)&=(\pi s^2)^{-1}\int_{P_s(z)}F(z)+\sum_{k=1}^{\infty}a_n(v-z)^n d\mu(v)\\ &=(\pi s^2)^{-1}F(z)+(\pi s^2)^{-1}\sum_{k=1}^{\infty}a_n\int_{P_s(z)}r^n e^{in\theta} d\mu(v)\\ &=(\pi s^2)^{-1}F(z) \end{aligned}

For d>1d>1, we can use the same argument to show that

Let IPs(z)(v)={1vPs(z)0vPs(z)\mathbb{I}_{P_s(z)}(v)=\begin{cases}1 & v\in P_s(z) \\0 & v\notin P_s(z)\end{cases} be the indicator function of Ps(z)P_s(z).

F(z)=(πs2)dUIPs(z)(v)1α(v)F(v)α(v)dμ(v)=(πs2)dIPs(z)1α,FL2(U,α)\begin{aligned} F(z)&=(\pi s^2)^{-d}\int_{U}\mathbb{I}_{P_s(z)}(v)\frac{1}{\alpha(v)}F(v)\alpha(v) d\mu(v)\\ &=(\pi s^2)^{-d}\langle \mathbb{I}_{P_s(z)}\frac{1}{\alpha},F\rangle_{L^2(U,\alpha)} \end{aligned}

By definition of inner product.

So F(z)2(πs2)2dIPs(z)1αL2(U,α)2FL2(U,α)2\|F(z)\|^2\leq (\pi s^2)^{-2d}\|\mathbb{I}_{P_s(z)}\frac{1}{\alpha}\|^2_{L^2(U,\alpha)} \|F\|^2_{L^2(U,\alpha)}.

All the terms are bounded and finite.

For part 2, we need to show that zU\forall z\in U, we can find a neighborhood VV of zz and a constant dzd_z such that

F(z)2dzFL2(U,α)2|F(z)|^2\leq d_z \|F\|^2_{L^2(U,\alpha)}

Suppose we have a sequence FnHL2(U,α)F_n\in \mathcal{H}L^2(U,\alpha) such that FnFF_n\to F, FL2(U,α)F\in L^2(U,\alpha).

Then FnF_n is a cauchy sequence in L2(U,α)L^2(U,\alpha). So,

supvVFn(v)Fm(v)dzFnFmL2(U,α)0 as n,m\sup_{v\in V}|F_n(v)-F_m(v)|\leq \sqrt{d_z}\|F_n-F_m\|_{L^2(U,\alpha)}\to 0\text{ as }n,m\to \infty

So the sequence FmF_m converges locally uniformly to some limit function which must be FF (Cd\mathbb{C}^d is Hausdorff, unique limit point).

Locally uniform limit of holomorphic functions is holomorphic. (Use Morera’s Theorem to show that the limit is still holomorphic in each variable.) So the limit function FF is actually in HL2(U,α)\mathcal{H}L^2(U,\alpha), which shows that HL2(U,α)\mathcal{H}L^2(U,\alpha) is closed.

which shows that HL2(U,α)\mathcal{H}L^2(U,\alpha) is closed.

Tip

[1.] states that point-wise evaluation of FF on UU is continuous. That is, for each zUz\in U, the map φ:HL2(U,α)C\varphi: \mathcal{H}L^2(U,\alpha)\to \mathbb{C} that takes FHL2(U,α)F\in \mathcal{H}L^2(U,\alpha) to F(z)F(z) is a continuous linear functional on HL2(U,α)\mathcal{H}L^2(U,\alpha). This is false for ordinary non-holomorphic functions, e.g. L2L^2 spaces.

Reproducing kernel

Let HL2(U,α)\mathcal{H}L^2(U,\alpha) be a holomorphic space. The reproducing kernel of HL2(U,α)\mathcal{H}L^2(U,\alpha) is a function K:U×UCK:U\times U\to \mathbb{C}, K(z,w),z,wUK(z,w),z,w\in U with the following properties:

  1. K(z,w)K(z,w) is holomorphic in zz and anti-holomorphic in ww.

    K(w,z)=K(z,w)K(w,z)=\overline{K(z,w)}
  2. For each fixed zUz\in U, K(z,w)K(z,w) is a square integrable dα(w)d\alpha(w). For all FHL2(U,α)F\in \mathcal{H}L^2(U,\alpha),

    F(z)=UK(z,w)F(w)α(w)dwF(z)=\int_U K(z,w)F(w) \alpha(w) dw
  3. If FL2(U,α)F\in L^2(U,\alpha), let PFPF denote the orthogonal projection of FF onto closed subspace HL2(U,α)\mathcal{H}L^2(U,\alpha). Then

    PF(z)=UK(z,w)F(w)α(w)dwPF(z)=\int_U K(z,w)F(w) \alpha(w) dw
  4. For all z,uUz,u\in U,

    UK(z,w)K(w,u)α(w)dw=K(z,u)\int_U K(z,w)K(w,u) \alpha(w) dw=K(z,u)
  5. For all zUz\in U,

    F(z)2K(z,z)FL2(U,α)2|F(z)|^2\leq K(z,z) \|F\|^2_{L^2(U,\alpha)}

Proof

For part 1, By Riesz Theorem, the linear functional evaluation at zUz\in U on HL2(U,α)\mathcal{H}L^2(U,\alpha) can be represented uniquely as inner product with some ϕzHL2(U,α)\phi_z\in \mathcal{H}L^2(U,\alpha).

F(z)=F,ϕzL2(U,α)=UF(w)ϕz(w)α(w)dwF(z)=\langle F,\phi_z\rangle_{L^2(U,\alpha)}=\int_U F(w)\overline{\phi_z(w)} \alpha(w) dw

And assume part 2 is true, then we have

K(z,w)=ϕz(w)K(z,w)=\overline{\phi_z(w)}

So part 1 is true.

For part 2, we can use the same argument

ϕz(w)=ϕz,ϕwL2(U,α)=ϕw,ϕzL2(U,α)=ϕw(z)\phi_z(w)=\langle \phi_z,\phi_w\rangle_{L^2(U,\alpha)}=\overline{\langle \phi_w,\phi_z\rangle_{L^2(U,\alpha)}}=\overline{\phi_w(z)}

… continue if needed.

Construction of reproducing kernel

Let {ej}\{e_j\} be any orthonormal basis of HL2(U,α)\mathcal{H}L^2(U,\alpha). Then for all z,wUz,w\in U,

j=1ej(z)ej(w)<\sum_{j=1}^{\infty} |e_j(z)\overline{e_j(w)}|<\infty

and

K(z,w)=j=1ej(z)ej(w)K(z,w)=\sum_{j=1}^{\infty} e_j(z)\overline{e_j(w)}

Bargmann space

The Bargmann spaces are the holomorphic spaces

HL2(Cd,μt)\mathcal{H}L^2(\mathbb{C}^d,\mu_t)

where

μt(z)=(πt)dexp(z2/t)\mu_t(z)=(\pi t)^{-d}\exp(-|z|^2/t)

For this research, we can tentatively set t=1t=1 and d=2d=2 for simplicity so that you can continue to read the next section.

Reproducing kernel for Bargmann space

For all d1d\geq 1, the reproducing kernel of the space HL2(Cd,μt)\mathcal{H}L^2(\mathbb{C}^d,\mu_t) is given by

K(z,w)=exp(zw/t)K(z,w)=\exp(z\cdot \overline{w}/t)

where zw=k=1dzkwkz\cdot \overline{w}=\sum_{k=1}^d z_k\overline{w_k}.

This gives the pointwise bounds

F(z)2exp(z2/t)FL2(Cd,μt)2|F(z)|^2\leq \exp(\|z\|^2/t) \|F\|^2_{L^2(\mathbb{C}^d,\mu_t)}

For all FHL2(Cd,μt)F\in \mathcal{H}L^2(\mathbb{C}^d,\mu_t), and zCdz\in \mathbb{C}^d.

Proofs are intentionally skipped, you can refer to the lecture notes for details.

Lie bracket of vector fields

Let X,YX,Y be two vector fields on a smooth manifold MM. The Lie bracket of XX and YY is an operator [X,Y]:C(M)C(M)[X,Y]:C^\infty(M)\to C^\infty(M) defined by

[X,Y](f)=X(Y(f))Y(X(f))[X,Y](f)=X(Y(f))-Y(X(f))

This operator is a vector field.

Continue here for quantization of Coherent states and POVMs

Last updated on