Skip to Content
Math416Complex Variables (Lecture 9)

Math416 Lecture 9

Review

Power Series

Let f(z)=n=0an(zz0)nf(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n be a power series.

Radius of Convergence

The radius of convergence of a power series is

R=1lim supnan1/n.R=\frac{1}{\limsup_{n\to\infty}|a_n|^{1/n}}.

New Material on Power Series

Derivative of Power Series

Let f(z)=n=0an(zz0)nf(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n be a power series.

Let g(z)=n=0nan(zz0)n1g(z)=\sum_{n=0}^{\infty}na_n(z-z_0)^{n-1} be another power series.

Then gg is holomorphic on D(z0,R)D(z_0,R) and g(z)=f(z)g'(z)=f(z) for all zD(z0,R)z\in D(z_0,R). and f(z)=g(z)f'(z)=g(z).

Proof:

Note radius of convergence of gg is also RR.

lim supnnan1/(n1)=lim supnan1/n\limsup_{n\to\infty}|na_n|^{1/(n-1)}=\limsup_{n\to\infty}|a_n|^{1/n}.

Let zD(z0,R)z\in D(z_0,R).

let zz0<ρ<R|z-z_0|<\rho<R.

Without loss of generality, assume z0=0z_0=0. Let w<ρ|w|<\rho.

f(z)f(w)zwg(z)=n=0[1zw(an(znwn))nanzn1]=n=0an[znwnzwnzn1]\begin{aligned} \frac{f(z)-f(w)}{z-w}-g(z)&=\sum_{n=0}^{\infty}\left[\frac{1}{z-w}\left(a_n(z^n-w^n)\right)-na_nz^{n-1}\right] \\ &=\sum_{n=0}^{\infty}a_n\left[\frac{z^n-w^n}{z-w}-nz^{n-1}\right] \end{aligned}

Notice that

znwnzw=k=0n1zn1kwk=zn1+zn2w++wn1\begin{aligned} \frac{z^n-w^n}{z-w}&=\sum_{k=0}^{n-1}z^{n-1-k}w^k \\ &=z^{n-1}+z^{n-2}w+\cdots+w^{n-1} \end{aligned}

Since

wkzk=(wz)(j=0k1wk1jzj)wzkρk1|w^k-z^k|=\left|(w-z)\left(\sum_{j=0}^{k-1}w^{k-1-j}z^j\right)\right|\leq|w-z|k\rho^{k-1} znwnzwnzn1=(zn1zn1)+(zn2wzn1)++(zwn1zn1)=zn2(wz)+zn3(w2z2)++z0(wn1zn1)=k=0n1zn1k(wkzk)k=0n1zn1kwzkρk1wzk=0n1kρk1\begin{aligned} \frac{z^n-w^n}{z-w}-nz^{n-1}&=(z^{n-1}-z^{n-1})+(z^{n-2}w-z^{n-1})+\cdots+(z w^{n-1}-z^{n-1}) \\ &=z^{n-2}(w-z)+z^{n-3}(w^2-z^2)+\cdots+z^0(w^{n-1}-z^{n-1}) \\ &=\sum_{k=0}^{n-1}z^{n-1-k}(w^k-z^k)\\ &\leq\sum_{k=0}^{n-1}z^{n-1-k}|w-z|k\rho^{k-1} \\ &\leq|w-z|\sum_{k=0}^{n-1}k\rho^{k-1} \\ \end{aligned}

Apply absolute value,

f(z)f(w)zwg(z)n=0anwz[k=1n1ρn1kkρk1]=wzn=0an[k=1n1ρn2k]=wzn=0ann(n1)2ρn2\begin{aligned} \left|\frac{f(z)-f(w)}{z-w}-g(z)\right|&\leq\sum_{n=0}^{\infty}|a_n||w-z|\left[\sum_{k=1}^{n-1}\rho^{n-1-k}k\rho^{k-1}\right] \\ &=|w-z|\sum_{n=0}^{\infty}|a_n|\left[\sum_{k=1}^{n-1}\rho^{n-2}k\right] \\ &=|w-z|\sum_{n=0}^{\infty}|a_n|\frac{n(n-1)}{2}\rho^{n-2} \\ \end{aligned}

Using Cauchy-Hadamard theorem, the radius of convergence of n=0n(n1)2anzn2\sum_{n=0}^{\infty}\frac{ n(n-1)}{2}|a_n|z^{n-2} is at least

1/lim supn[n(n1)2an]1/(n1)=R.1/\limsup_{n\to\infty}\left[\frac{n(n-1)}{2}|a_n|\right]^{1/(n-1)}=R.

Therefore,

wzn=0ann(n1)2ρn2Cwz|w-z|\sum_{n=0}^{\infty}|a_n|\frac{n(n-1)}{2}\rho^{n-2} \leq C|w-z|

where CC is dependent on ρ\rho.

So limwzf(z)f(w)zwg(z)=0\lim_{w\to z}\left|\frac{f(z)-f(w)}{z-w}-g(z)\right|=0. as desired.

QED

Corollary of power series

If f(z)=n=0an(zz0)nf(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n in D(z0,R)D(z_0,R), then a0=f(z0),a1=f(z0)/1!,a2=f(z0)/2!a_0=f(z_0), a_1=f'(z_0)/1!, a_2=f''(z_0)/2!, etc.

Definition (Analytic)

A function hh on an open set UCU\subset\mathbb{C} is called analytic if for every zUz\in U, ϵ>0\exists \epsilon>0 such that on D(z,ϵ)UD(z,\epsilon)\subset U, hh can be represented as a power series n=0an(zz0)n\sum_{n=0}^{\infty}a_n(z-z_0)^n.

Theorem (Analytic implies holomorphic)

If ff is analytic on UU, then ff is holomorphic on UU.

n=01n!f(n)(z)n\sum_{n=0}^{\infty}\frac{1}{n!}f^{(n)}(z)^n

Radius of convergence is \infty.

So f(0)=1=ce0=cf(0)=1=ce^0=c

n=01nzn\sum_{n=0}^{\infty}\frac{1}{n}z^n

Radius of convergence is 11.

f=n=1zn1=11zf'=\sum_{n=1}^{\infty}z^{n-1}=\frac{1}{1-z} (Geometric series)

So g(z)=c+log(11z)=c+2πki=log(11z)+2πkig(z)=c+\log(\frac{1}{1-z})=c+2\pi k i=\log(\frac{1}{1-z})+2\pi k i

Cauchy Product of power series

Let f(z)=n=0anznf(z)=\sum_{n=0}^{\infty}a_nz^n and g(z)=n=0bnzng(z)=\sum_{n=0}^{\infty}b_nz^n be two power series.

Then f(z)g(z)=n=0=n=0cnzn=n=0k=0nakbnkznf(z)g(z)=\sum_{n=0}^{\infty}=\sum_{n=0}^{\infty}c_nz^n=\sum_{n=0}^{\infty}\sum_{k=0}^{n}a_kb_{n-k}z^n

Theorem of radius of convergence of Cauchy product

Let f(z)=n=0anznf(z)=\sum_{n=0}^{\infty}a_nz^n and g(z)=n=0bnzng(z)=\sum_{n=0}^{\infty}b_nz^n be two power series.

Then the radius of convergence of f(z)g(z)f(z)g(z) is at least min(Rf,Rg)\min(R_f,R_g).

Without loss of generality, assume z0=0z_0=0.

(j=0Najzj)(k=0Nbkzk)l=0Nclzl=j=0Nk=NjNajbkzj+kN/2max(j,k)Najbkzj+k(j=N/2Najzj)(k=0bkzk)+(j=0ajzj)(k=N/2bkzk)\begin{aligned} \left(\sum_{j=0}^{N}a_jz^j\right)\left(\sum_{k=0}^{N}b_kz^k\right)-\sum_{l=0}^{N}c_lz^l&=\sum_{j=0}^{N}\sum_{k=N-j}^{N}a_jb_kz^{j+k}\\ &\leq\sum_{N/2\leq\max(j,k)\leq N}|a_j||b_k||z^{j+k}|\\ &\leq\left(\sum_{j=N/2}^{N}|a_j||z^j|\right)\left(\sum_{k=0}^{\infty}|b_k||z^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||z^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||z^k|\right)\\ \end{aligned}

Since j=0ajzj\sum_{j=0}^{\infty}|a_j||z^j| and k=0bkzk\sum_{k=0}^{\infty}|b_k||z^k| are convergent, and j=N/2Najzj\sum_{j=N/2}^{N}|a_j||z^j| and k=N/2bkzk\sum_{k=N/2}^{\infty}|b_k||z^k| converges to zero.

So (j=0Najzj)(k=0Nbkzk)l=0Nclzl(j=N/2Najzj)(k=0bkzk)+(j=0ajzj)(k=N/2bkzk)0\left|\left(\sum_{j=0}^{N}a_jz^j\right)\left(\sum_{k=0}^{N}b_kz^k\right)-\sum_{l=0}^{N}c_lz^l\right|\leq\left(\sum_{j=N/2}^{N}|a_j||z^j|\right)\left(\sum_{k=0}^{\infty}|b_k||z^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||z^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||z^k|\right)\to 0 as NN\to\infty.

So n=0cnzn\sum_{n=0}^{\infty}c_nz^n converges to f(z)g(z)f(z)g(z) on D(0,RfRg)D(0,R_fR_g).

Last updated on