Skip to Content
Math416Complex Variables (Lecture 13)

Math416 Lecture 13

Review on Cauchy’s Theorem

Cauchy’s Theorem states that if a function is holomorphic (complex differentiable) on a simply connected domain, then the integral of that function over any closed contour within that domain is zero.

Last lecture we proved the case for convex regions.

Cauchy’s Formula for a Circle

Let CC be a counterclockwise oriented circle, and let ff be a holomorphic

function defined in an open set containing CC and its interior. Then,

f(z0)=12πiCf(z)zz0dzf(z_0)=\frac{1}{2\pi i}\int_C\frac{f(z)}{z-z_0}dz

for all points zz in the interior of CC.

New materials

Mean value property

Theorem 7.6: Mean value property

Special case: Suppose ff is holomorphic on some D(z0,R)C\mathbb{D}(z_0,R)\subset \mathbb{C}, by cauchy’s formula,

f(z0)=12πiCrf(z)zz0dzf(z_0)=\frac{1}{2\pi i}\int_{C_r}\frac{f(z)}{z-z_0}dz

Parameterizing CrC_r, we get γ(t)=z0+reit\gamma(t)=z_0+re^{it}, 0t2π0\leq t\leq 2\pi

f(z)dz=f(γ)γ(t)dt\int f(z)dz=\int f(\gamma) \gamma'(t) d t

So,

f(z0)=12πi02πf(z0+reit)reitireitdt=12π02πf(z0+reit)dtf(z_0)=\frac{1}{2\pi i}\int_0^{2\pi}\frac{f(z_0+re^{it})}{re^{it}} ire^{it} dt=\frac{1}{2\pi}\int_{0}^{2\pi} f(z_0+re^{it}) dt

This concludes the mean value property for the holomorphic function

If ff is holomorphic, f(z0)f(z_0) is the mean value of ff on any circle centered at z0z_0

Area representation of mean value property

Area of ff on D(z0,r)\mathbb{D}(z_0,r)

1πr202π0rf(z0+reit)\frac{1}{\pi r^2}\int_{0}^{2\pi}\int_0^r f(z_0+re^{it})

/Track lost/

Cauchy Integral

Definition 7.7

Let γ:[a,b]C\gamma:[a,b]\to \mathbb{C} be piecewise C1\mathbb{C}^1, let ϕ\phi be condition on γ\gamma. Then the Cauchy interval of ϕ\phi along γ\gamma is

F(z)=γϕ(ζ)ζzdζF(z)=\int_{\gamma}\frac{\phi(\zeta)}{\zeta-z}d \zeta

Theorem

Suppose F(z)=γϕ(z)ζzdzF(z)=\int_{\gamma}\frac{\phi(z)}{\zeta-z}d z. Then FF has a local power series representation at all points z0z_0 not in γ\gamma.

Proof:

Let R=B(z0,γ)>0R=B(z_0,\gamma)>0, let zD(z0,R)z\in \mathbb{D}(z_0,R)

So

1ζz=1(ζz0)(zz0)=11z011zz0ζz0\frac{1}{\zeta-z}=\frac{1}{(\zeta-z_0)-(z-z_0)}=\frac{1}{1-z_0}\frac{1}{1-\frac{z-z_0}{\zeta-z_0}}

Since zz0<R|z-z_0|<R and ζz0>R|\zeta-z_0|>R, zz0ζz0<1|\frac{z-z_0}{\zeta-z_0}|<1.

Converting it to geometric series

11z011zz0ζz0=n=0(zz0ζz0)n\frac{1}{1-z_0}\frac{1}{1-\frac{z-z_0}{\zeta-z_0}}=\sum_{n=0}^\infty \left(\frac{z-z_0}{\zeta-z_0}\right)^n

So,

F(z)=γϕ(ζ)ζzdζ=γϕ(ζ)zz0n=0(zz0ζz0)ndz=n=0(zz0)nγϕ(ζ)(ζz0)n+1\begin{aligned} F(z)&=\int_\gamma \frac{\phi(\zeta)}{\zeta - z} d\zeta\\ &=\int_\gamma \frac{\phi(\zeta)}{z-z_0} \sum_{n=0}^\infty \left(\frac{z-z_0}{\zeta-z_0}\right)^n dz\\ &=\sum_{n=0}^\infty (z-z_0)^n \int_\gamma \frac{\phi(\zeta)}{(\zeta-z_0)^{n+1}} \end{aligned}

Which gives us an power series representation if we set an=γϕ(ζ)(ζz0)n+1a_n=\int_\gamma \frac{\phi(\zeta)}{(\zeta-z_0)^{n+1}}

QED

Corollary 7.7

Suppose F(z)=γϕ(ζ)ζz0dzF(z)=\int_\gamma \frac{\phi(\zeta)}{\zeta-z_0} dz,

Then,

f(n)(z)=n!γϕ(z)(ζz0)n+1dζf^{(n)}(z)=n!\int_\gamma \frac{\phi(z)}{(\zeta-z_0)^{n+1}} d\zeta

where zCγz\in \mathbb{C}\setminus \gamma.

Combine with Cauchy integral formula:

If ff is in O(Ω)O(\Omega), then zD(z0,r)\forall z\in \mathbb{D}(z_0,r).

f(z)=12πiCrf(ζ)ζzdζf(z)=\frac{1}{2\pi i}\int_{C_r}\frac{f(\zeta)}{\zeta-z} d\zeta

We have proved that If fO(Ω)f\in O(\Omega), then ff is locally given by a convergent power series

power series has radius of convergence at z0z_0 that is \geq dist(z0z_0,boundary Ω\Omega)

Liouville’s Theorem

Definition 7.11

A function that is holomorphic in all of C\mathbb{C} is called an entire function.

Theorem 7.11 Liouville’s Theorem

Any bounded entire function is constant.

Basic Estimate of integral

γf(z)dzL(γ)maxf(z)\left|\int_\gamma f(z) dz\right|\leq L(\gamma) \max\left|f(z)\right|

Since,

f(z)=12πiCrf(z)(ζz)2dzf'(z)=\frac{1}{2\pi i} \int_{C_r} \frac{f(z)}{(\zeta-z)^2} dz

So the modulus of the integral is bounded by

12πM1R2=2πRM1R2=MR\frac{1}{2\pi} |M|\cdot \frac{1}{R^2}=2\pi R\cdot M \frac{1}{R^2}=\frac{M}{R}

Fundamental Theorem of Algebra

Theorem 7.12 Fundamental Theorem of ALgebra

Every nonconstant polynomial with complex coefficients can be factored over C\mathbb{C} into linear factors.

Corollary

For every polynomial with complex coefficients.

p(z)=cj=in(zz0)tjp(z)=c\prod_{j=i}^n(z-z_0)^{t_j}

where the degree of polynomial is j=0ntj\sum_{j=0}^n t_j

Proof:

Let p(z)=a0+a1z++anznp(z)=a_0+a_1z+\cdots+a_nz^n, where an0a_n\neq 0 and n1n\geq 1.

So

p(z)=anzn[1+an1anz++a0anzn]|p(z)|=|a_nz_n|\left[\left|1+\frac{a_{n-1}}{a_nz}+\cdots+\frac{a_0}{a_nz^n}\right|\right]

If zR|z|\geq R, 1+an1anz++a0anzn<12\left|1+\frac{a_{n-1}}{a_nz}+\cdots+\frac{a_0}{a_nz^n}\right|<\frac{1}{2}

Last updated on