Skip to Content
Math4201Topology I (Lecture 4)

Math4201 Topology I (Lecture 4)

Recall from last lecture

Assignment due next Thursday. 10PM

Let B\mathcal{B} be a basis for a topology. Then the topology (TB\mathcal{T}_{\mathcal{B}}) generated by B\mathcal{B} is {UTBxU,BB such that xBU}\{U\in \mathcal{T}_{\mathcal{B}} \mid \forall x\in U, \exists B\in \mathcal{B} \text{ such that } x\in B\subseteq U\}.

New materials

Topology basis

Given a topology on a set XX, When is a given collection of subsets of XX a basis for a topology?

Suppose UTU\in\mathcal{T} is an open set in XX. If an arbitrary set C\mathcal{C} is a basis for T\mathcal{T}, then by the definition of a topology generated by a basis, we should have the following:

CC such that xCU\exists C\in \mathcal{C} \text{ such that } x\in C\subseteq U

Theorem of basis of topology

Caution

In this course, we use lowercase letters to denote element of a set, and uppercase letters to denote sets. We use X\mathcal{X} to denote set of subsets of XX.

Let (X,T)(X,\mathcal{T}) be a topological space. Let CT\mathcal{C}\subseteq \mathcal{T} be a collection of subsets of XX satisfying the following property:

UT,CC such that UC\forall U\in \mathcal{T}, \exists C\in \mathcal{C} \text{ such that } U\subseteq C

Then C\mathcal{C} is a basis and the topology generated by C\mathcal{C} is T\mathcal{T}.

Proof

We want to show that C\mathcal{C} is a basis.

Recall the definition of a basis:

  1. xX\forall x\in X, there is BBB\in \mathcal{B} such that xBx\in B
  2. B1,B2B\forall B_1,B_2\in \mathcal{B}, xB1B2\forall x\in B_1\cap B_2, there is B3BB_3\in \mathcal{B} such that xB3B1B2x\in B_3\subseteq B_1\cap B_2

First, we want to show that C\mathcal{C} satisfies the first property.

Take xXx\in X. Since XTX\in \mathcal{T}, we can apply the given condition (UT,CC such that UC\forall U\in \mathcal{T}, \exists C\in \mathcal{C} \text{ such that } U\subseteq C) to get CCC\in \mathcal{C} such that xCXx\in C\subseteq X.

Next, we want to show that C\mathcal{C} satisfies the second property.

Let C1,C2CC_1,C_2\in \mathcal{C} and xC1C2x\in C_1\cap C_2. Since C1,C2TC_1,C_2\in \mathcal{T}, by the definition of T\mathcal{T}, we have U=C1C2TU=C_1\cap C_2\in \mathcal{T}.

We can apply the given condition to get C3CC_3\in \mathcal{C} such that xC3U=C1C2x\in C_3\subseteq U=C_1\cap C_2.


Then we want to show that the topology generated by C\mathcal{C} is T\mathcal{T}.

Recall the definition of the topology generated by a basis:

To prove this, we need to show that UT    UTC\forall U\in \mathcal{T}\implies U\in \mathcal{T}_{\mathcal{C}} and UTC    UT\forall U\in \mathcal{T}_{\mathcal{C}}\implies U\in \mathcal{T}.

Moreover, from last lecture, we have UTB    U=αIBαU\in \mathcal{T}_{\mathcal{B}}\iff U=\bigcup_{\alpha \in I} B_\alpha for some {Bα}αIB\{B_\alpha\}_{\alpha \in I}\subseteq \mathcal{B}.

First, we want to show that UTC    UT\forall U\in \mathcal{T}_{\mathcal{C}}\implies U\in \mathcal{T}.

Let U=αICαU=\bigcup_{\alpha \in I} C_\alpha for some {Cα}αIC\{C_\alpha\}_{\alpha \in I}\subseteq \mathcal{C}. Then since CαTC_\alpha\in \mathcal{T}, by the definition of T\mathcal{T}, we have UTU\in \mathcal{T}.

Next, we want to show that UT    UTC\forall U\in \mathcal{T}\implies U\in \mathcal{T}_{\mathcal{C}}.

Let UTU\in \mathcal{T}. Then xU\forall x\in U by the given condition, we have CCC\in \mathcal{C} such that xCUx\in C\subseteq U.

So, U=αICαTCU=\bigcup_{\alpha \in I} C_\alpha\in \mathcal{T}_{\mathcal{C}}. (using the same trick last time )

Let T\mathcal{T} be the topology on XX. Then T\mathcal{T} itself satisfies the basis condition.

Definition of subbasis of topology

A subbasis of a topology on a set XX is a collection ST\mathcal{S}\subseteq \mathcal{T} of subsets of XX such that their union is XX.

S={SαSαX}αI and αISα=X\mathcal{S}=\{S_{\alpha}\mid S_\alpha\subseteq X\}_{\alpha \in I}\text{ and }\bigcup_{\alpha \in I} S_\alpha=X

Definition of topology generated by a subbasis

If we consider the basis generated by the subbasis S\mathcal{S} by the following:

B={BB is the intersection of a finite number of elements of S}\mathcal{B}=\{B\mid B\text{ is the intersection of a finite number of elements of }\mathcal{S}\}

Then B\mathcal{B} is a basis.

Proof

First, xX\forall x\in X, there is SαSS_\alpha\in \mathcal{S} such that xSαx\in S_\alpha. In particular, xBx\in \mathcal{B}.

Second, let B1,B2BB_1,B_2\in \mathcal{B}. Since B1B_1 is the intersection of a finite number of elements of S\mathcal{S}, we have B1=i=1nSi1,B2=i=1nSi2B_1=\bigcap_{i=1}^n S_{i_1}, B_2=\bigcap_{i=1}^n S_{i_2} for some Si1,Si2SS_{i_1},S_{i_2}\in \mathcal{S}.

So B1B2B_1\cap B_2 is the intersection of finitely many elements of S\mathcal{S}.

So B1B2BB_1\cap B_2\in \mathcal{B}.

We call the topology generated by B\mathcal{B} the topology generated by the subbasis S\mathcal{S}. Denote it by TS\mathcal{T}_{\mathcal{S}}.

An open set with respect to TS\mathcal{T}_{\mathcal{S}} is a subset of XX such that it can be written as a union of finitely intersections of elements of S\mathcal{S}.

Example (standard topology on real numbers)

Let X=RX=\mathbb{R}. Take S={(,a)aR}{(a,+)aR}\mathcal{S}=\{(-\infty, a)|a\in \mathbb{R}\}\cup \{(a,+\infty)|a\in \mathbb{R}\}.

We claim this is a subbasis of the standard topology on R\mathbb{R}.

The basis B\mathcal{B} associated with S\mathcal{S} is the collection of all open intervals.

B={(a,b)=(,b)(a,+)}\mathcal{B}=\{(a,b)=(-\infty, b)\cap (a,+\infty)\}

So, B=Bst\mathcal{B}=\mathcal{B}_{st} (the standard basis).

This topology on R\mathbb{R} is the same as the standard topology on R\mathbb{R}.

Example (finite complement topology)

Let XX be an arbitrary set. Let S\mathcal{S} defined as follows:

S={SXS=X{x} for some xX}\mathcal{S}=\{S\subseteq X\mid S=X\setminus \{x\} \text{ for some } x\in X\}

Let x,yXx,y\in X and xyx\neq y. Then Sx=X{x}S_x=X\setminus \{x\} and Sy=X{y}S_y=X\setminus \{y\} are two elements of S\mathcal{S}. Since xyx\neq y, we have SxSy=X{x}X{y}=XS_x\cup S_y=X\setminus \{x\}\cup X\setminus \{y\}=X. So S\mathcal{S} is a subbasis of XX.

So, the basis associated with S\mathcal{S}, B\mathcal{B}, is the collection of subsets of XX with finite complement.

This is in fact a topology, which is the finite complement topology on XX.

Last updated on