Skip to Content
Math4201Topology I (Lecture 3)

Math4201 Topology I (Lecture 3)

Recall form last lecture

Topological Spaces

Basis for a topology

Let XX be a set. A basis for a topology on XX is a collection B\mathcal{B} (elements of B\mathcal{B} are called basis elements) of subsets of XX such that:

  1. xX\forall x\in X, BB\exists B\in \mathcal{B} such that xBx\in B
  2. B1,B2B\forall B_1,B_2\in \mathcal{B}, xB1B2\forall x\in B_1\cap B_2, B3B\exists B_3\in \mathcal{B} such that xB3B1B2x\in B_3\subseteq B_1\cap B_2

Example of standard basis in real numbers

Let X=RX=\mathbb{R} and B={(a,b)a,bR,a<b}\mathcal{B}=\{(a,b)|a,b\in \mathbb{R},a<b\} (collection of all open intervals).

Check properties 1:

for any xRx\in \mathbb{R}, (x1,x+1)B\exists (x-1,x+1)\in \mathcal{B} such that x(x1,x+1)x\in (x-1,x+1)

Check properties 2:

let B1=(a,b)B_1=(a,b) and B2=(c,d)B_2=(c,d) be two basis elements, and xB1B2=(max(a,c),min(b,d))Bx\in B_1\cap B_2=(\max(a,c),\min(b,d))\in \mathcal{B}.

Example of lower limit basis in real numbers

Let X=RX=\mathbb{R} and BLL={[a,b)a,bR,a<b}\mathcal{B}_{LL}=\{[a,b)|a,b\in \mathbb{R},a<b\} (collection of all open intervals).

Check properties 1:

for any xRx\in \mathbb{R}, [x,x+1)BLL\exists [x,x+1)\in \mathcal{B}_{LL} such that x[x,x+1)x\in [x,x+1)

Check properties 2:

let B1=[a,b)B_1=[a,b) and B2=[c,d)B_2=[c,d) be two basis elements, and xB1B2=[max(a,c),min(b,d))BLLx\in B_1\cap B_2=[max(a,c),min(b,d))\in \mathcal{B}_{LL}.

Extend this to R2\mathbb{R}^2.

Definition for cartesian product

Let XX and YY be sets. The cartesian product of XX and YY is the set X×Y={(x,y)xX,yY}X\times Y=\{(x,y)|x\in X,y\in Y\}.

Example of open rectangles basis for real plane

Let X=R2X=\mathbb{R}^2 and B\mathcal{B} be the collection of rectangle of the form (a,b)×(c,d)(a,b)\times (c,d) where a,b,c,dRa,b,c,d\in \mathbb{R} and a<b,c<da<b,c<d. (boundary is not included)

Check properties 1:

for any (x,y)R2(x,y)\in \mathbb{R}^2, (x,y)B\exists (x,y)\in \mathcal{B} such that (x,y)(x,y)(x,y)\in (x,y)

Check properties 2:

let B1=(a,b)×(c,d)B_1=(a,b)\times (c,d) and B2=(e,f)×(g,h)B_2=(e,f)\times (g,h) be two basis elements, and (x,y)B1B2=(max(a,e),min(b,f))×(max(c,g),min(d,h))B(x,y)\in B_1\cap B_2=(max(a,e),min(b,f))\times (max(c,g),min(d,h))\in \mathcal{B}.

Example of open disks basis for real plane

Let X=R2X=\mathbb{R}^2 and B\mathcal{B} be the collection of open disks.

Check properties 1:

for any xR2x\in \mathbb{R}^2, B1(x)B\exists B_1(x)\in \mathcal{B} such that xB1(x)x\in B_1(x).

Check properties 2:

let Br1(x)B_{r_1}(x) and Br2(y)B_{r_2}(y) be two basis elements, for every zBr1(x)Br2(y)z\in B_{r_1}(x)\cap B_{r_2}(y), Br3(z)B\exists B_{r_3}(z)\in \mathcal{B} such that zBr3(z)Br1(x)Br2(y)z\in B_{r_3}(z)\subseteq B_{r_1}(x)\cap B_{r_2}(y).

(even Br1(x)Br2(y)BB_{r_1}(x)\cap B_{r_2}(y)\notin \mathcal{B})

Topology generated by a basis

Let B\mathcal{B} be a basis for a topology on XX. The topology generated by B\mathcal{B}, denoted by TB\mathcal{T}_{\mathcal{B}}.

UTB    xU,BBU\in \mathcal{T}_{\mathcal{B}}\iff \forall x\in U, \exists B\in \mathcal{B} such that xBUx\in B\subseteq U

Proof

TB\mathcal{T}_{\mathcal{B}} is a topology on XX because:

  1. TB\emptyset \in \mathcal{T}_{\mathcal{B}} because B\emptyset \in \mathcal{B}. XTBX\in \mathcal{T}_{\mathcal{B}} because xX,BB\forall x\in X, \exists B\in \mathcal{B} such that xBXx\in B\subseteq X (by definition of basis (property 1)))

  2. TB\mathcal{T}_{\mathcal{B}} is closed under arbitrary unions.

    Want to show {UαUαTB}αI    αIUαTB\{U_\alpha | U_\alpha\in \mathcal{T}_{\mathcal{B}}\}_{\alpha \in I}\implies \bigcup_{\alpha \in I} U_\alpha\in \mathcal{T}_{\mathcal{B}}.

    Because xαIUα\forall x\in \bigcup_{\alpha \in I} U_\alpha, α0\exists \alpha_0 such that xUα0x\in U_{\alpha_0}. Since Uα0TBU_{\alpha_0}\in \mathcal{T}_{\mathcal{B}}, BB\exists B\in \mathcal{B} such that xBUα0αIUαx\in B\subseteq U_{\alpha_0}\subseteq \bigcup_{\alpha \in I} U_\alpha.

  3. TB\mathcal{T}_{\mathcal{B}} is closed under finite intersections.

    Want to show U1,U2,,UnTB    i=1nUiTBU_1,U_2,\ldots,U_n\in \mathcal{T}_{\mathcal{B}}\implies \bigcap_{i=1}^n U_i\in \mathcal{T}_{\mathcal{B}}.

    If n=2n=2, since xU1U2\forall x\in U_1\cap U_2, xU1x\in U_1 and xU2x\in U_2, B1B\exists B_1\in \mathcal{B} such that xB1U1x\in B_1\subseteq U_1 and B2B\exists B_2\in \mathcal{B}.

    Applying the second property of basis, B3B\exists B_3\in \mathcal{B} such that xB3B1B2U1U2x\in B_3\subseteq B_1\cap B_2\subseteq U_1\cap U_2.

    By induction, we can show that i=1nUiTB\bigcap_{i=1}^n U_i\in \mathcal{T}_{\mathcal{B}}.

Example of topology generated by a basis

Let XX be arbitrary.

Let B={xxX}\mathcal{B}=\{x|x\in X\} (collection of all singleton subsets of XX).

Then T\mathcal{T} is the discrete topology.

Properties of basis in generated topology

Observation 1: Any BBB\in \mathcal{B} is an open set in TB\mathcal{T}_{\mathcal{B}}.

By the defining property of basis, xB\forall x\in B, xBB\exists x\in B\subseteq B.

Observation 2: For any collection {Bα}αI\{B_\alpha\}_{\alpha \in I}, αIBαTB\bigcup_{\alpha \in I} B_\alpha\in \mathcal{T}_{\mathcal{B}}.

By observation 1, each BαTBB_\alpha\in \mathcal{T}_{\mathcal{B}}. Since TB\mathcal{T}_{\mathcal{B}} is a topology, αIBαTB\bigcup_{\alpha \in I} B_\alpha\in \mathcal{T}_{\mathcal{B}}.

Lemma

Let B\mathcal{B} and TB\mathcal{T}_{\mathcal{B}} be a basis and the topology generated by B\mathcal{B} on XX. Then,

UTB    U\in \mathcal{T}_{\mathcal{B}}\iff there are basis elements {Bα}αI\{B_\alpha\}_{\alpha \in I} such that U=αIBαU=\bigcup_{\alpha \in I} B_\alpha.

Proof

()(\Rightarrow)

If UTBU\in \mathcal{T}_{\mathcal{B}}, we want to show that UU is a union of basis elements.

For any xUx\in U, by the definition of TB\mathcal{T}_{\mathcal{B}}, there is a basis element BxB_x such that xBxUx\in B_x\subseteq U.

So, UxUBxU\subseteq \bigcup_{x\in U} B_x.

Since Bx{Bx}αI\forall B_x\in \{B_x\}_{\alpha \in I}, BxUB_x\subseteq U, we have UxUBxU\supseteq\bigcup_{x\in U} B_x.

So, U=xUBxU=\bigcup_{x\in U} B_x.

()(\Leftarrow)

Applies observation 2.

Note

A basis for a topology is like a basis for a vector space in the sense that any open set/vector can be represented in terms of basis elements.

But unlike linear algebra, it’s not true that any open set can be written as a union of basis element in a unique way.

Last updated on