Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 7)

Math4121 Lecture 7

Continue on Chapter 6

Riemann integrable

Theorem 6.6

A function ff is Riemann integrable with respect to α\alpha on [a,b][a, b] if and only if for every ϵ>0\epsilon > 0, there exists a partition PP of [a,b][a, b] such that U(f,P,α)L(f,P,α)<ϵU(f, P, \alpha) - L(f, P, \alpha) < \epsilon.

Proof:

    \impliedby

For every PP,

L(f,P,α)abfdαabfdαU(f,P,α)L(f, P, \alpha) \leq \underline{\int}_a^b f d\alpha \leq \overline{\int}_a^b f d\alpha \leq U(f, P, \alpha)

So if ff is Riemann integrable with respect to α\alpha on [a,b][a, b], then for every ϵ>0\epsilon > 0, there exists a partition PP such that

0abfdαabfdαU(f,P,α)L(f,P,α)<ϵ0 \leq \overline{\int}_a^b f d\alpha - \underline{\int}_a^b f d\alpha \leq U(f, P, \alpha) - L(f, P, \alpha) < \epsilon

Thus 0abfdαabfdα<ϵ,ϵ>00 \leq \overline{\int}_a^b f d\alpha - \underline{\int}_a^b f d\alpha < \epsilon,\forall \epsilon > 0.

Then, abfdα=abfdα\overline{\int}_a^b f d\alpha = \underline{\int}_a^b f d\alpha.

So, ff is Riemann integrable with respect to α\alpha on [a,b][a, b].

    \implies

If fR(α)f\in \mathscr{R}(\alpha) on [a,b][a, b], then ff is Riemann integrable with respect to α\alpha on [a,b][a, b].

Then by the definition of Riemann integrable, supPL(f,P,α)=abfdα=infPU(f,P,α)\sup_{P} L(f, P, \alpha) =\int^b_a f d\alpha = \inf_{P} U(f, P, \alpha).

Given any ϵ>0\epsilon > 0, by definition of infimum and supremum, there exists a partition P1,P2P_1,P_2 such that

abfdαϵ2<L(f,P1,α)supPL(f,P,α)=infPU(f,P,α)<abfdα+ϵ2\int^b_a f d\alpha - \frac{\epsilon}{2} < L(f, P_1, \alpha) \leq \sup_{P} L(f, P, \alpha) = \inf_{P} U(f, P, \alpha) < \int^b_a f d\alpha + \frac{\epsilon}{2}

Taking P=P1P2P = P_1 \cup P_2, by Theorem 6.4  we have

U(f,P,α)L(f,P,α)(abfdα+ϵ2)(abfdαϵ2)=ϵU(f, P, \alpha) - L(f, P, \alpha) \leq \left( \int^b_a f d\alpha + \frac{\epsilon}{2} \right) - \left( \int^b_a f d\alpha - \frac{\epsilon}{2} \right) = \epsilon

So ff is Riemann integrable with respect to α\alpha on [a,b][a, b].

QED

Theorem 6.8

If ff is continuous on [a,b][a, b], then ff is Riemann integrable with respect to α\alpha on [a,b][a, b].

Proof:

Main idea:

U(f,P,α)L(f,P,α)=i=1n(Mimi)ΔαiU(f, P, \alpha) - L(f, P, \alpha) = \sum_{i=1}^n \left( M_i - m_i \right) \Delta \alpha_i

If we can make MimiM_i - m_i small enough, then U(f,P,α)L(f,P,α)U(f, P, \alpha) - L(f, P, \alpha) can be made arbitrarily small.

Since Mi=supx[ti1,ti]f(x)M_i=\sup_{x\in [t_{i-1}, t_i]} f(x) and mi=infx[ti1,ti]f(x)m_i=\inf_{x\in [t_{i-1}, t_i]} f(x), we can make MimiM_i - m_i small enough by making the partition PP sufficiently fine.

Suppose we can find a partition PP such that Mimi<ηM_i - m_i < \eta. Then U(f,P,α)L(f,P,α)ηi=1nΔαi=η(α(b)α(a))U(f, P, \alpha) - L(f, P, \alpha) \leq\eta\sum_{i=1}^n \Delta \alpha_i = \eta (\alpha(b)-\alpha(a)).

Let ϵ>0\epsilon >0 and choose η=ϵα(b)α(a)\eta = \frac{\epsilon}{\alpha(b)-\alpha(a)}. Then there exists a partition PP such that U(f,P,α)L(f,P,α)<ϵU(f, P, \alpha) - L(f, P, \alpha) < \epsilon.

Since ff is continuous on [a,b][a, b] (a compact set), then ff is uniformly continuous on [a,b][a, b]. Theorem 4.19 

If ff is continuous on xx, then ϵ>0\forall \epsilon > 0, δ>0\exists \delta > 0 such that xy<δ    f(x)f(y)<ϵ|x-y| < \delta \implies |f(x)-f(y)| < \epsilon.

If ff is continuous on [a,b][a, b], then ff is continuous at x,x[a,b]x,\forall x\in [a, b].

So, there exists a δ>0\delta > 0 such that for all x,t[a,b]x, t\in [a, b] with xt<δ|x-t| < \delta, we have f(x)f(t)<η|f(x)-f(t)| < \eta.

Let P={x0,x1,,xn}P=\{x_0, x_1, \cdots, x_n\} be a partition of [a,b][a, b] such that Δxi<δ\Delta x_i < \delta for all ii.

So, supx,t[xi1,xi]f(x)f(t)<η\sup_{x,t\in [x_{i-1}, x_i]} |f(x)-f(t)| < \eta for all ii.

supx,t[xi1,xi]f(x)f(t)=supx,t[xi1,xi]f(x)f(t)=supx[xi1,xi]f(x)supt[xi1,xi]f(t)=supx[xi1,xi]f(x)inft[xi1,xi]f(t)=Mimi\begin{aligned} \sup_{x,t\in [x_{i-1}, x_i]} |f(x)-f(t)| &= \sup_{x,t\in [x_{i-1}, x_i]} f(x)-f(t) \\ &= \sup_{x\in [x_{i-1}, x_i]} f(x)-\sup_{t\in [x_{i-1}, x_i]} -f(t) \\ &=\sup_{x\in [x_{i-1}, x_i]} f(x)-\inf_{t\in [x_{i-1}, x_i]} f(t) \\ &= M_i - m_i \end{aligned}

So, ff is Riemann integrable with respect to α\alpha on [a,b][a, b].

QED

Last updated on