Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 6)

Math4121 Lecture 6

Chapter 6: Riemann-Stieltjes Integral

A nice point to restart your learning, LOL.

Differentiation and existence of the integral

Definition 6.1

Let [a,b]R[a,b]\subseteq \mathbb{R}. A partition of [a,b][a,b] is a finite sequence of points {x0,x1,,xn}[a,b]\{x_0,x_1,\cdots,x_n\}\subseteq [a,b] such that x0<x1<<xnx_0<x_1<\cdots<x_n.

Let α:[a,b]R\alpha:[a,b]\to \mathbb{R} be monotone increasing. (α(x)α(y)\alpha(x)\leq \alpha(y) for xyx\leq y)

We will use α\alpha for monotone increasing function in later sections.

Definition 6.2

For a partition PP of [a,b][a,b], we define Δαi=α(xi)α(xi1)\Delta \alpha_i=\alpha(x_i)-\alpha(x_{i-1}) for i=1,2,,ni=1,2,\cdots,n.

Let f:[a,b]Rf:[a,b]\to \mathbb{R} be bounded.

Then we define

mi=infx[xi1,xi]f(x),Mi=supx[xi1,xi]f(x).m_i=\inf_{x\in [x_{i-1},x_i]}f(x),\quad M_i=\sup_{x\in [x_{i-1},x_i]}f(x).

Defined the lower and upper Riemann sum by

L(P,f,α)=i=1nmiΔαi,U(P,f,α)=i=1nMiΔαi.L(P,f,\alpha)=\sum_{i=1}^n m_i\Delta \alpha_i,\quad U(P,f,\alpha)=\sum_{i=1}^n M_i\Delta \alpha_i.

Defined the lower and upper integral by

abf(x)dα=supPL(P,f,α),abf(x)dα=infPU(P,f,α).\underline{\int_a^b}f(x)d\alpha=\sup_P L(P,f,\alpha),\quad \overline{\int_a^b}f(x)d\alpha=\inf_P U(P,f,\alpha).

If abf(x)dα=abf(x)dα\underline{\int_a^b}f(x)d\alpha=\overline{\int_a^b}f(x)d\alpha, then we say ff is Riemann-Stieltjes integrable with respect to α\alpha on [a,b][a,b], written as fR(α)f\in \mathscr{R}(\alpha), and the common value is called the Riemann-Stieltjes integral of ff with respect to α\alpha on [a,b][a,b], denoted by

abf(x)dα=abf(x)dα=abf(x)dα.\int_a^b f(x)d\alpha=\underline{\int_a^b}f(x)d\alpha=\overline{\int_a^b}f(x)d\alpha.

If α(x)=x\alpha(x)=x, then we write abf(x)dx\int_a^b f(x)dx instead of abf(x)dα\int_a^b f(x)d\alpha.

Damn, that’s a really loooong definition.

Definition 6.3

A partition PP^* is called a refinement of PP if PPP\subseteq P^*.

Given two partitions P1P_1 and P2P_2, we define their common refinement P=P1P2P^*=P_1\cup P_2. we can merge two partitions by adding all points in both partitions.

Theorem 6.4

If PP^* is a refinement of PP, then

L(P,f,α)L(P,f,α)L(P^*,f,\alpha)\geq L(P,f,\alpha)

Refinement of a partition will never make the lower sum smaller.

U(P,f,α)U(P,f,α)U(P^*,f,\alpha)\leq U(P,f,\alpha)

Refinement of a partition will never make the upper sum larger.

Proof:

Main idea:

Let P=P0P1P2PK=PP=P_0\subset P_1\subset P_2\subset \cdots \subset P_K=P^*.

Where PkP_k has more points than Pk1P_{k-1}.

It suffices to show that L(Pk,f,α)L(Pk1,f,α)L(P_k,f,\alpha)\geq L(P_{k-1},f,\alpha) for all k=1,2,,Kk=1,2,\cdots,K.

Let Pk1={y0,y1,,yJ}P_{k-1}=\{y_0,y_1,\cdots,y_J\} and Pk={y0,y1,,yj1,y,yj,,yJ}P_k=\{y_0,y_1,\cdots,y_{j-1},y^*,y_j,\cdots,y_J\}.

Then, since α\alpha is monotone increasing, we have yj1yyjy_{j-1}\leq y^*\leq y_j.

L(Pk,f,α)L(Pk1,f,α)=i=1j+1infx[yi1,yi]f(x)(α(yi)α(yi1))i=1jinfx[yi1,yi]f(x)(α(yi)α(yi1))=infx[y,yj]f(x)(α(yj)α(y))+infx[yj1,y]f(x)(α(y)α(yj1))infx[yj1,yj]f(x)(α(yj)α(yj1))mj(α(yj)α(y))+mj(α(y)α(yj1))mj1(α(yj)α(yj1))=0\begin{aligned} L(P_k,f,\alpha)-L(P_{k-1},f,\alpha)&=\sum_{i=1}^{j+1}\inf_{x\in [y_{i-1},y_i]}f(x)(\alpha(y_i)-\alpha(y_{i-1}))-\sum_{i=1}^j\inf_{x\in [y_{i-1},y_i]}f(x)(\alpha(y_i)-\alpha(y_{i-1}))\\ &=\inf_{x\in [y^*,y_j]}f(x)(\alpha(y_j)-\alpha(y^*))+\inf_{x\in [y_{j-1},y^*]}f(x)(\alpha(y^*)-\alpha(y_{j-1}))-\inf_{x\in [y_{j-1},y_j]}f(x)(\alpha(y_j)-\alpha(y_{j-1}))\\ &\geq m_j(\alpha(y_j)-\alpha(y^*))+m_j(\alpha(y^*)-\alpha(y_{j-1}))-m_{j-1}(\alpha(y_j)-\alpha(y_{j-1}))\\ &=0 \end{aligned}

Same for U(Pk,f,α)U(Pk1,f,α)U(P_k,f,\alpha)\geq U(P_{k-1},f,\alpha).

QED

Theorem 6.5

abf(x)dαabf(x)dα\underline{\int_a^b}f(x)d\alpha\leq \overline{\int_a^b}f(x)d\alpha

Proof:

Let PP^* be a common refinement of P1P_1 and P2P_2.

By Theorem 6.4, we have

L(P1,f,α)L(P,f,α)U(P,f,α)U(P2,f,α)L(P_1,f,\alpha)\leq L(P^*,f,\alpha)\leq U(P^*,f,\alpha)\leq U(P_2,f,\alpha)

Fixing P1P_1 and take the supremum over all P2P_2, we have

abf(x)dαsupP1L(P1,f,α)infP2U(P2,f,α)=abf(x)dα\underline{\int_a^b}f(x)d\alpha\leq \sup_{P_1}L(P_1,f,\alpha)\leq \inf_{P_2}U(P_2,f,\alpha)=\overline{\int_a^b}f(x)d\alpha

QED

Last updated on