Skip to Content

Math4501 Lecture 3

Review from last lecture

Bisection method for finding root

P1. Let ff be a continuous function on [a,b]R[a,b]\to \mathbb{R}, find ξ[a,b]\xi \in [a,b] such that f(ξ)=0f(\xi)=0.

P2. Let gg be a continuous function on [a,b]R[a,b]\to \mathbb{R}, find ξ[a,b]\xi \in [a,b] such that g(ξ)=ξg(\xi)=\xi.

Theorem 1:

solution to P1 exists if f(a)f(b)<0f(a)f(b)<0.

Theorem 2:

Fixed point theorem:

If solution to P2 exists, then g:[a,b][a,b]g:[a,b]\to [a,b].

Bijection method

Obtain two sequence (an)n=1(a_n)_{n=1}^\infty and (bn)n=1(b_n)_{n=1}^\infty.

Initially, we set a0=aa_0=a and b0=bb_0=b.

If anbn<2na0b0|a_n-b_n|<2^{-n}|a_0-b_0|, then ana_n and bnb_n are Cauchy sequence. So their limit exists.

limnan=limnbn=ξ\lim_{n\to\infty} a_n=\lim_{n\to\infty} b_n=\xi.

Simple iteration method

Definition of Simple Iteration

Given x0[a,b]x_0\in [a,b], we define a sequence (xn)n=0(x_n)_{n=0}^\infty by

xn+1=g(xn)x_{n+1}=g(x_n)

If a simple iteration converges, the it converges to a fixed point of

Proof

Let climnxn=g(c)c\coloneqq \lim_{n\to\infty} x_n=g(c).

g:[a,b]Rg:[a,b]\to \mathbb{R} is continuous if and only if gg is continuous at x0[a,b]x_0\in [a,b].

Definition of Lipschitz continuous

A function g:[a,b]Rg:[a,b]\to \mathbb{R} is Lipschitz continuous if for all x,y[a,b]x,y\in [a,b], there exists a constant L>0L>0 such that

g(x)g(y)Lxy|g(x)-g(y)|\leq L|x-y|

for some L>0L>0.

Note

Lipschitz continuous is a stronger condition than continuous.

If a function is Lipschitz continuous, then it is continuous.

However, the converse is not true.

Definition of contraction mapping

A function g:[a,b]Rg:[a,b]\to \mathbb{R} is a contraction mapping if it is Lipschitz continuous with L<1L<1.

Theorem of simple iteration

Let g:[a,b][a,b]g:[a,b]\to [a,b] is a contraction mapping (Lipschitz continuous with L<1L<1, with pointwise ontinuous gg).

Then

  • gg has a unique fixed point ξ[a,b]\xi \in [a,b]
  • Simple iteration xn+1=g(xn)x_{n+1}=g(x_n) converges to ξ\xi for any x0[a,b]x_0\in [a,b].

Proof

Uniqueness:

Suppose ξ1\xi_1 and ξ2\xi_2 are two fixed points of gg.

Then x1x2=g(ξ1)g(ξ2)Lξ1ξ2|x_1-x_2|=|g(\xi_1)-g(\xi_2)|\leq L|\xi_1-\xi_2|.

Thus, (1L)ξ1ξ20(1-L)|\xi_1-\xi_2|\leq 0, which implies ξ1ξ2=0|\xi_1-\xi_2|=0.

A more general result:

Brouwer’s fixed point theorem

Convergence:

Let ξ[a,b]\xi\in [a,b] be the unique fixed point of gg.

Then,

\begin{aligned} |x_n-\xi|&=|g(x_{n-1})-g(\xi)|\\ &\leq L|x_{n-1}-\xi|\\ &=L|g(x_{n-2})-g(\xi)|\\ &\leq L^2|x_{n-2}-\xi|\\ &\vdots\\ &\leq L^n|x_0-\xi|

Thus, we can always find NN such that LNx0ξ<ϵL^N|x_0-\xi|<\epsilon for any ϵ>0\epsilon>0. Choose N=log(ϵx0ξ)/log(L)N=\log(\frac{\epsilon}{|x_0-\xi|})/\log(L).

Therefore, xnx_n converges to ξ\xi.

Last updated on