Skip to Content
Math4302Modern Algebra (Lecture 5)

Math4302 Modern Algebra (Lecture 5)

Groups

Subgroups

A subset HGH\subseteq G is a subgroup of GG if

  • eHe\in H
  • a,bH,abH\forall a,b\in H, a b\in H
  • aH    a1Ha\in H\implies a^{-1}\in H

HH with * is a group

We denote as HGH\leq G.

Example

For an arbitrary group (G,)(G,*),

({e},)(\{e\},*) and (G,)(G,*) are always subgroups.


(Z,+)(\mathbb{Z},+) is a subgroup of (R,+)(\mathbb{R},+).


Non-example:

(Z+,+)(\mathbb{Z}_+,+) is not a subgroup of (Z,+)(\mathbb{Z},+).


Subgroup of Z4\mathbb{Z}_4:

({0,1,2,3},+)(\{0,1,2,3\},+) (if 1H1\in H, 3H3\in H)

({0,2},+)(\{0,2\},+)

({0},+)(\{0\},+)


Subgroup of Z5\mathbb{Z}_5:

({0,1,2,3,4},+)(\{0,1,2,3,4\},+)

({0},+)(\{0\},+)

Cyclic group with prime order has only two subgroups


Let DnD_n denote the group of symmetries of a regular nn-gon. (keep adjacent points pairs).

Dn={σSni,j are adjacent     σ(i),σ(j) are adjacent }D_n=\{\sigma\in S_n\mid i,j\text{ are adjacent } \iff \sigma(i),\sigma(j)\text{ are adjacent }\} (12342314)D4\begin{pmatrix} 1&2&3&4\\ 2&3&1&4 \end{pmatrix}\notin D_4

D4D_4 has order 88 and S4S_4 has order 2424.

Dn=2n|D_n|=2n. (nn option to rotation, nn option to reflection. For σ(1)\sigma(1) we have nn option, σ(2)\sigma(2) has 2 option where the remaining only has 1 option.)

Since 141-4 is not adjacent in such permutation.

DnSnD_n\leq S_n (SnS_n is the symmetric group of nn elements).

Lemma of subgroups

If HGH\subseteq G is a non-empty subset of a group GG.

then (HH is a subgroup of GG) if and only if (a,bH    ab1Ha,b\in H\implies ab^-1\in H).

Proof

If HH is subgroup, then eHe\in H, so HH is non-empty and if a,bHa,b\in H, then b1Hb^{-1}\in H, so ab1Hab^{-1}\in H.


If HH has the given property, then HH is non-empty and if a,bHa,b\in H, then ab1Hab^-1\in H, so

  • There is some a,aHa,a\in H, aa1Haa^{-1}\in H, so eHe\in H.
  • If bHb\in H, then eHe\in H, so eb1Heb^{-1}\in H, so b1Hb^{-1}\in H.
  • If b,cHb,c\in H, then c1c^{-1}, so bc^{-1}^{-1}\in H, so bcHbc\in H.

Cyclic group

GG is cyclic if GG is a subgroup generated by aGa\in G. (may be infinite)

ZnDnSn\mathbb{Z}_n\leq D_n\leq S_n.

Cyclic group is always abelian.

Last updated on