Skip to Content
Math4302Modern Algebra (Lecture 4)

Math4302 Modern Algebra (Lecture 4)

Groups

Group Isomorphism

Definition of isomorphism

Let (G1,1)(G_1,*_1) and (G2,2)(G_2,*_2) be two groups. Then (G1,1)(G_1,*_1) and (G2,2)(G_2,*_2) are isomorphic if there exists a bijection f:G1G2f:G_1\to G_2 such that for all x,yG1x,y\in G_1, f(xy)=f(x)f(y)f(x*y)=f(x)*f(y). We say that (G1,1)(G_1,*_1) is isomorphic to (G2,2)(G_2,*_2).

(G1,1)(G2,2)(G_1,*_1)\simeq (G_2,*_2)

Example and non-example for isomorphism

As we have seen in class, (Z4,+)(\mathbb{Z}_4,+) and ({1,1,i,i},)(\{1,-1,i,-i\},*) are isomorphic.


(Z,+)(\mathbb{Z},+) and (R,+)(\mathbb{R},+) are not isomorphic. There is no bijection from (Z,+)(\mathbb{Z},+) to (R,+)(\mathbb{R},+).


Let M2(R)M_2(\mathbb{R}) denotes the set of 2×22\times 2 matrices with addition. Then (R4,+)(\mathbb{R}^4,+) and (M2(R),+)(M_2(\mathbb{R}),+) are isomorphic.


(Z,+)(\mathbb{Z},+) and (Q,+)(\mathbb{Q},+) are not isomorphic.

  • There exists bijection mapping ZQ\mathbb{Z}\to \mathbb{Q}, but

Suppose we have f(1)=aQf(1)=a\in \mathbb{Q}, so there exists unique element f(x),xZf(x), x\in \mathbb{Z} such that f(x)=a2f(x)=\frac{a}{2}, if such function ff is isomorphic (preserves addition), then f(2x)=f(x)+f(x)=af(2x)=f(x)+f(x)=a. So 2x=12x=1, such xx does not exist in Z\mathbb{Z}.

Isomorphism of Groups defines an equivalence relation

Isomorphism of groups is an equivalence relation.

  1. Reflexive: (G1,1)(G1,1)(G_1,*_1)\simeq (G_1,*_1)
  2. Symmetric: (G1,1)(G2,2)    (G2,2)(G1,1)(G_1,*_1)\simeq (G_2,*_2)\implies (G_2,*_2)\simeq (G_1,*_1)
  3. Transitive: (G1,1)(G2,2)(G2,2)(G3,3)    (G1,1)(G3,3)(G_1,*_1)\simeq (G_2,*_2)\land (G_2,*_2)\simeq (G_3,*_3)\implies (G_1,*_1)\simeq (G_3,*_3)

Easy to prove using bijective maps and definition of isomorphism.

Some fun facts

For any prime number, there is only one group of order pp for any pNp\in\mathbb{N}.

OEIS A000001 

Example of non-abelian finite groups

Permutations (Symmetric groups) SnS_n.

Let AA be a set of nn elements, a permutation of AA is a bijection from AA to AA.

σ:AA\sigma: A\to A

Let AA be a finite set, A={1,2,...,n}A=\{1,2,...,n\}. Then there are n!n! permutations of AA.

We can denote each permutation on A={1,2,...,n}A=\{1,2,...,n\} by

σ=(12...nσ(1)σ(2)...σ(n))\sigma=\begin{pmatrix} 1&2&...&n\\ \sigma(1)&\sigma(2)&...&\sigma(n) \end{pmatrix}

Symmetric Groups

The set of permutation on a set AA form a group under function composition.

  • Identity: σid=(12...n12...n)\sigma_{id}=\begin{pmatrix} 1&2&...&n\\ 1&2&...&n \end{pmatrix}
  • Inversion: If f:AAf: A\to A is a bijection, then f1:AAf^{-1}: A\to A is a bijection and is the inverse of ff.
  • Associativity: (σ1σ2)σ3=σ1(σ2σ3)(\sigma_1*\sigma_2)*\sigma_3=\sigma_1*(\sigma_2*\sigma_3)

Sn=n!|S_n|=n!

When n=1,2n=1,2, the group is abelian.

but when n=3n=3, we have some σ,τS3\sigma,\tau\in S_3 such that σττσ\sigma*\tau\neq \tau*\sigma.

Let σ=(123231)\sigma=\begin{pmatrix} 1&2&3\\ 2&3&1 \end{pmatrix} and τ=(123321)\tau=\begin{pmatrix} 1&2&3\\ 3&2&1\\ \end{pmatrix}, then στ=(123132)\sigma*\tau=\begin{pmatrix} 1&2&3\\ 1&3&2 \end{pmatrix} and τσ=(123213)\tau*\sigma=\begin{pmatrix} 1&2&3\\ 2&1&3 \end{pmatrix}.

Therefore τσστ\tau*\sigma\neq \sigma*\tau.

Then we have a group of order 3!=63!=6 that is not abelian.

For any n3n\geq 3, SnS_n is not abelian. (Proof by induction, keep σ,τ\sigma,\tau extra entries being the same$).

Another notation for permutations is using the cycle.

Suppose we have σ=(12342314)\sigma=\begin{pmatrix} 1&2&3&4\\ 2&3&1&4\\ \end{pmatrix}, then we have the cycle (1,2,3)(4)(1,2,3)(4).

this means we send 12311\to 2\to 3\to 1 and 444\to 4.

Some case we ignore (4)(4) and just write (1,2,3)(1,2,3).

Tip

From now on, we use GG to denote (G,)(G,*) and abab to denote aba*b to save chalks.

If GG is abelian, we use ++ to denote the group operations

  • Instead of aba*b or abab, we write a+ba+b.
  • Instead of a1a^{-1}, we write a-a.
  • Instead of ee, we write 00.
  • Instead of ana^{n}, we write nana.
Last updated on