Skip to Content
Math4302Modern Algebra (Lecture 3)

Math4302 Modern Algebra (Lecture 3)

Groups

More examples for groups

Let Q+\mathbb{Q}^+ be the set of positive rational numbers.

Then (Q+,×)(\mathbb{Q}^+,\times) is a abelian group with identity 11 and inverse a1=1aa^{-1}=\frac{1}{a}.

If we defined * by ab=ab2a*b=\frac{ab}{2}, then we have identity 22. ae=ae2=aa*e=\frac{ae}{2}=a, we have e=2e=2.

and inverse a1a=a22=2a^{-1}a=\frac{a^2}{2}=2, therefore a1=4aa^{-1}=\frac{4}{a}.

This is also an abelian group.

Properties for groups

  • (ab)1=b1a1(a*b)^{-1}=b^{-1}*a^{-1} (inverse)
  • ab=ac    b=ca*b=a*c\implies b=c (cancellation on the left)
  • ba=ca    b=cb*a=c*a\implies b=c (cancellation on the right)
  • If ab=ea*b=e, then b=a1b=a^{-1} (we can solve linear equations)

Additional notation

for n1n\geq 1,

  • an=aaaa^n=a*a\cdot \cdots \cdot a (n times)
  • an=a1a1a^{-n}=a^{-1}\cdot \cdots \cdot a^{-1} (n times)

for n=0n=0, a0=ea^0=e

We can easily prove this is equivalent to our usual sense for power notations.

That is

  • anam=an+ma^n*a^m=a^{n+m}
  • (an)m=anm(a^n)^m=a^{nm}
  • an=(a1)na^{-n}=(a^{-1})^n

Finite groups

Group with 4 elements.

*eabc
eeabc
aabce
bbcea
cceab

Note a,ca,c are inverses and bb self inverse.

isomorphic to (Z4,+)(\mathbb{Z}_4,+), ({1,1,i,i},)(\{1,-1,i,-i\},\cdot)

and we may also have

*eabc
eeabc
aaecb
bbcea
ccbae

is

Cyclic groups

It is the group of integers modulo addition nn.

  • Associativity: (a+b)+c=a+(b+c)(a+b)+c=a+(b+c)
  • Identity: a+0=aa+0=a
  • Inverses: a+(a)=0a+(-a)=0

For group with 44 elements

*0123
00123
11230
22301
33012

Complex numbers

Consider {1,i,1,i}\{1,i,-1,-i\} with multiplication.

*1i-1-i
11i-1-i
ii-1-i1
-1-1-i1i
-i-i1i-1

Note that if we replace 11 with 00 and ii with 11, and 1-1 with 22 and i-i with 33, you get the exact the same table as Z4\mathbb{Z}_4.

Last updated on