Skip to Content
Math429Linear Algebra (Lecture 5)

Lecture 5

Chapter II Finite Dimensional Subspaces

Span and Linear Independence 2A

Definition 2.15

A list of vector v1,...,vm\vec{v_1},...,\vec{v_m} in VV is called linearly independent if the only choice for a1,...,amFa_1,...,a_m\in \mathbb{F} such that a1v1+...+amvm=0a_1\vec{v_1}+...+a_m\vec{v_m}=\vec{0} is a1=...=am=0a_1=...=a_m=0

If {v1,...,vm}\{\vec{v_1},...,\vec{v_m}\} is NOT linearly independent then we call them linearly dependent.

Examples:

  • The empty list is linearly independent.

  • Consider the list with a single vector, {v}\{\vec{v}\}, is lienarly independent, if av=0    a=0a\vec{v}=\vec{0}\implies a=0. This implication holds when as long as v0\vec{v}\neq \vec{0}.

  • Consider V=F3V=\mathbb{F}^3 {(1,2,3),(1,1,1)}\{(1,2,3),(1,1,1)\}, more generally, {v1,v2}\{\vec{v_1},\vec{v_2}\}, by the definition of linear independence, 0=a1v1+a2v2\vec{0}=a_1\vec{v_1}+a_2\vec{v_2}. This is equivalent to a1v1=a2v2a_1\vec{v_1}=-a_2\vec{v_2}

    • Case 1: if any of the vector is a zero vector v1=0\vec{v_1}=\vec{0} or v2=0\vec{v_2}=\vec{0}, assume ( v2=0\vec{v_2}=\vec{0} ) then for a1=0a_1=0 and any a2a_2, a1v1=a2v2a_1\vec{v_1}=-a_2\vec{v_2}.

    • Case 2: if v10\vec{v_1}\neq \vec{0} and v20\vec{v_2}\neq \vec{0} a1v1=a2v2a_1\vec{v_1}=-a_2\vec{v_2} implies that they lie on the same line.

    {(1,2,3),(1,1,1)}\{(1,2,3),(1,1,1)\} is linearly independent.

  • Consider the list {(1,2,3),(1,1,1),(1,0,1)}\{(1,2,3),(1,1,1),(-1,0,1)\}, since we can get 0\vec{0} from a non-trivial solution (1,2,3)2(1,1,1)(1,0,1)=0(1,2,3)-2(1,1,1)-(-1,0,1)=\vec{0}

Lemma (weak version)

A list of {v1,...,vm}\{\vec{v_1},...,\vec{v_m}\} is linearly dependent     \iff there is a vk\vec{v_k} satisfying vk=a1v1+...+ak1vk1+ak+1vk+1+...+amvm\vec{v_k}=a_1\vec{v_1}+...+a_{k-1}\vec{v_{k-1}}+a_{k+1}\vec{v_{k+1}}+...+a_m\vec{v_m} (vkSpan{v1,...,vk1,vk+1,...,vk}v_k\in Span\{\vec{v_1},...,\vec{v_{k-1}},\vec{v_{k+1}},...,\vec{v_k}\})

Proof:

{v1,...,vm}\{\vec{v_1},...,\vec{v_m}\} is linearly dependent     \iff a1v1+...+amvm=0a_1\vec{v_1}+...+a_m\vec{v_m}=\vec{0} (with at least one ak0a_k\neq 0)

If akvk=(a1v1+...+ak1vk1+ak+1vk+1+...+amvm)a_k\vec{v_k}=-(a_1\vec{v_1}+...+a_{k-1}\vec{v_{k-1}}+a_{k+1}\vec{v_{k+1}}+...+a_m\vec{v_m}), then vk=1ak(a1v1+...+ak1vk1+ak+1vk+1+...+amvm)\vec{v_k}=-\frac{1}{a_k}(a_1\vec{v_1}+...+a_{k-1}\vec{v_{k-1}}+a_{k+1}\vec{v_{k+1}}+...+a_m\vec{v_m})

Lemma (2.19) (strong version)

If {v1,...,vm}\{\vec{v_1},...,\vec{v_m}\} is linearly dependent, then vkSpan{v1,...,vk1}\exists \vec{v_k} \in Span\{\vec{v_1},...,\vec{v_{k-1}}\}. Moreover, Span{v1,...,vm}=Span{v1,...,vk1,vk+1,...,vk}Span\{\vec{v_1},...,\vec{v_m}\}=Span\{\vec{v_1},...,\vec{v_{k-1}},\vec{v_{k+1}},...,\vec{v_k}\}

Proof:

{v1,...,vm}\{\vec{v_1},...,\vec{v_m}\} is linearly dependent     \implies a1v1+...+amvm=0a_1\vec{v_1}+...+a_m\vec{v_m}=\vec{0}. Let kk be the maximal ii such that ai0a_i\neq 0

If v=b1v1+...+bmvm\vec{v}=b_1\vec{v_1}+...+b_m\vec{v_m}, then v=b1v1+...+bk1vk1+bk(1ak(a1v1+....+ak1vk1))+bk+1vk+1+...+bmvmSpan{v1,...,vk1,vk+1,...,vk}\vec{v}=b_1\vec{v_1}+...+b_{k-1}\vec{v_{k-1}}+b_{k}(-\frac{1}{a_k}(a_1\vec{v_1}+....+a_{k-1}\vec{v_{k-1}}))+b_{k+1}\vec{v_{k+1}}+...+b_m\vec{v_m}\in Span\{\vec{v_1},...,\vec{v_{k-1}},\vec{v_{k+1}},...,\vec{v_k}\}

Proposition 2.22

In a finite dimensional vector space, if {v1,...,vm}\{\vec{v_1},...,\vec{v_m}\} is linearly independent set, and {u1,...,un}\{\vec{u_1},...,\vec{u_n}\} is a Spanning set, then mnm\leq n.

Since Span{u1,...,un}=VSpan\{\vec{u_1},...,\vec{u_n}\}=V , for each vi=a1u1+...+anun\vec{v_i}=a_1\vec{u_1}+...+a_n\vec{u_n} for some scalar a1,...,ana_1,...,a_n. Consider the equation x1v1+...+xmvm=0x_1\vec{v_1}+...+x_m\vec{v_m}=\vec{0}, (if we write it to the matrix form, it will have more columns than the rows. It is guaranteed to have free variables.)

Proof:

We will construct a new Spanning set with elements ui\vec{u_i} being replaced by vj\vec{v-j}‘s

Step 1. Consider set {v1,u1,u2,...,un}=V\{\vec{v_1},\vec{u_1},\vec{u_2},...,\vec{u_n}\}=V. Because v1Span{u1,...,un}\vec{v_1}\in Span\{\vec{u_1},...,\vec{u_n}\} then the set is linearly dependent. by lemma 2.19, i\exists i such that uiSpan{v1,u1,u2,...,un}\vec{u_i}\in Span\{\vec{v_1},\vec{u_1},\vec{u_2},...,\vec{u_n}\}. The lemma 2.19 also implies that we cna remove ui\vec{u_i} such that the set is still a Spanning set V={v1,u1,u2,...,ui1,ui+1,...,un}V=\{\vec{v_1},\vec{u_1},\vec{u_2},...,\vec{u_{i-1}},\vec{u_{i+1}},...,\vec{u_n}\}

Step 2. Consider set {v1,...,vk,us,...,ut}=V\{\vec{v_1},...,\vec{v_k},\vec{u_s},...,\vec{u_t}\}=V

Step k-1. Consider set {v1,...,vk1,vk,us,...,ut}=V\{\vec{v_1},...,\vec{v_{k-1}},\vec{v_k},\vec{u_s},...,\vec{u_t}\}=V which is linearly dependent. Apply lemma 2.19 again, we can find there is a ujSpan{v1,...,vk1,vk,us,...,ur}\vec{u_j}\in Span\{\vec{v_1},...,\vec{v_{k-1}},\vec{v_k},\vec{u_s},...,\vec{u_r}\}. with r<jr<j. Then we remove uj\vec{u_j} and update the set.

Basis 2B

Definition 2.26

A linearly independent Spanning set is called a basis. “smallest spanning set”

Last updated on