Skip to Content
Math429Linear Algebra (Lecture 37)

Lecture 37

Chapter VIII Operators on complex vector spaces

Generalized Eigenspace Decomposition 8B


Review

Definition 8.19

The generalized eigenspace of TT for λF\lambda \in \mathbb{F} is G(λ,T)={vV(TλI)kv=0 for some k>0}G(\lambda,T)=\{v\in V\vert (T-\lambda I)^k v=0\textup{ for some k>0}\}

Theorem 8.20

G(λ,T)=null((TλI)dim V)G(\lambda, T)=null((T-\lambda I)^{dim\ V})


New materials

Theorem 8.31

Suppose v1,...,vnv_1,...,v_n is a basis where M(T,(v1,...,vk))M(T,(v_1,...,v_k)) is upper triangular. Then the number of times λ\lambda appears on the diagonal is the multiplicity of λ\lambda as an eigenvalue of TT.

Proof:

Let λ1,...,λn\lambda_1,...,\lambda_n be the diagonal entries, SS be such that M(S,(v1,...,vn))M(S,(v_1,...,v_n)) is upper triangular. Note that if μ1,...,μn\mu_1,...,\mu_n are the diagonal entires of M(S)M(S), then the diagonal entires of M(Sn)M(S^n) are μ1n,...,μnn\mu_1^n,...,\mu_n^n

dim(null Sn)=ndim range (Sn)n number of non-zero diagonal entries on Sn= number of zero diagonal entries of Sn\begin{aligned} dim(null\ S^n)&=n-dim\ range\ (S^n)\leq n-\textup{ number of non-zero diagonal entries on } S^n\\ &=\textup{ number of zero diagonal entries of }S^n \end{aligned}

plus in S=TλIS=T-\lambda I, then

dimG(λ,T)=dim(null (TλI)n)number times where λ appears on the diagonal of M(T)\begin{aligned} dim G(\lambda, T)&=dim(null\ (T-\lambda I)^n)\\ &\leq \textup{number times where }\lambda \textup{ appears on the diagonal of }M(T)\\ \end{aligned}

Note:

V=G(λ1,T)G(λk,T)V=G(\lambda_1, T)\oplus \dots \oplus G(\lambda_k, T)

for distinct λ1,...,λk\lambda_1,...,\lambda_k thus n=dim G(λ1,T)++dim (λk,T)n=dim\ G(\lambda_1,T)+\dots +dim\ (\lambda_k, T)

on the other hand n= number of times λ1 appears as a diagonal entry++ number of times λk appears as a diagonal entry+n=\textup{ number of times }\lambda_1 \textup{ appears as a diagonal entry}+\dots +\textup{ number of times }\lambda_k \textup{ appears as a diagonal entry}+\dots

So dim G(λi,T)=dim\ G(\lambda_i, T)= number of times where λi\lambda_i appears oas a diagonal entry.

Definition 8.35

A block diagonal matrix is a matrix of the form (A100Am)\begin{pmatrix} A_1& & 0\\ & \ddots &\\ 0& & A_m \end{pmatrix} where AkA_k is a square matrix.

Example:

(1000002100002000004100004) \begin{pmatrix} 1&0&0 & 0&0\\ 0 & 2 &1&0&0\\ 0 & 0 &2&0&0\\ 0& 0&0& 4&1\\ 0& 0&0& 0&4\\ \end{pmatrix}

Theorem

Let VV be a complex vector space and let λ1,...,λm\lambda_1,...,\lambda_m be the distinct eigenvalue of TT with multiplicity d1,...,dmd_1,...,d_m, then there exists a basis where (A100Am)\begin{pmatrix} A_1& & 0\\ & \ddots &\\ 0& & A_m \end{pmatrix} where AkA_k is a dk×dkd_k\times d_k matrix upper triangular with only λk\lambda_k on the diagonal.

Proof:

Note that (TλkI)G(λk,T)(T-\lambda_k I)\vert_{G(\lambda_k,T)} is nilpotent. So there is a basis of G(λk,T)G(\lambda_k,T) where (TλkI)G(λk,T)(T-\lambda_k I)\vert_{G(\lambda_k,T)} is upper triangular with zeros on the diagonal. Then (TλkI)G(λk,T)(T-\lambda_k I)\vert_{G(\lambda_k,T)} is upper triangular with λk\lambda_k on the diagonal.

Jordan Normal Form 8C

Nilpotent operators

Example: T(x,y,z)=(0,x,y),M(T)=(010001000)T(x,y,z)=(0,x,y), M(T)=\begin{pmatrix} 0&1&0\\ 0&0&1\\ 0&0&0 \end{pmatrix}

Definition 8.44

Let TL(V)T\in \mathscr{L}(V) a basis of VV is a Jordan basis of TT if in that basis (A100Ap)\begin{pmatrix} A_1& & 0\\ & \ddots &\\ 0& & A_p \end{pmatrix} where each Ak=(λ11010λk)A_k=\begin{pmatrix} \lambda_1& 1& & 0\\ & \ddots& \ddots &\\ &&\ddots& 1\\ 0&&&\lambda_k\\ \end{pmatrix}

Theorem 8.45

Suppose TL(V)T\in \mathscr{L}(V) is nilpotent, then there exists a basis of VV that is a Jordan basis of TT.

Sketch of Proof:

Induct on dim Vdim\ V, if dim V=1dim\ V=1, clear.

if dim V>1dim\ V>1, then let mm be such that Tm=0T^m=0 and Tm10T^{m-1}\neq 0. Then uV\exists u\in V such that Tm1u0T^{m-1}u\neq 0, then Span(u,Tu,...,Tm1u)Span (u,Tu, ...,T^{m-1}u) is mm dimensional.

Theorem 8.46

Suppose VV is a complex vector space TL(V)T\in \mathscr{L}(V) then TT has a Jordan basis.

Proof:

take V=G(λ1,T)G(λm,T)V=G(\lambda_1, T)\oplus \dots \oplus G(\lambda_m, T), then look at (TλkI)G(λk,T)(T-\lambda_k I)\vert_{G(\lambda_k,T)}

Last updated on