Skip to Content
Math429Linear Algebra (Lecture 25)

Lecture 25

Chapter VI Inner Product Spaces

Inner Products and Norms 6A

Dot Product (Euclidean Inner Product)

vw=v1w1+...+vnwnv\cdot w=v_1w_1+...+v_n w_n :Rn×RnR-\cdot -:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}

Some properties

  • vv0v\cdot v\geq 0
  • vv=0    v=0v\cdot v=0\iff v=0
  • (u+v)w=uw+vw(u+v)\cdot w=u\cdot w+v\cdot w
  • (cv)w=c(vw)(c\cdot v)\cdot w=c\cdot(v\cdot w)

Definition 6.2

An inner product ,:V×VF\langle,\rangle:V\times V\to \mathbb{F}

Positivity: v,v0\langle v,v\rangle\geq 0

Definiteness: v,v=0    v=0\langle v,v\rangle=0\iff v=0

Additivity: u+v,w=u,w+v,w\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle

Homogeneity: λu,v=λu,v\langle \lambda u, v\rangle=\lambda\langle u,v\rangle

Conjugate symmetry: u,v=v,u\langle u,v\rangle=\overline{\langle v,u\rangle}

Note: the dot product on Rn\mathbb{R}^n satisfies these properties

Example:

V=C0([1,])V=C^0([-1,-])

L2L_2 - inner product.

f,g=11fg\langle f,g\rangle=\int^1_{-1} f\cdot g

f,f=11f20\langle f,f\rangle=\int ^1_{-1}f^2\geq 0

f+g,h=f,h+g,h\langle f+g,h\rangle=\langle f,h\rangle+\langle g,h\rangle

λf,g=λf,g\langle \lambda f,g\rangle=\lambda\langle f,g\rangle

f,g=11fg=11gf=g,f\langle f,g\rangle=\int^1_{-1} f\cdot g=\int^1_{-1} g\cdot f=\langle g,f\rangle

The result is in real vector space so no conjugate…

Theorem 6.6

For ,\langle,\rangle an inner product

(a) Fix VV, then the map given by uu,vu\mapsto \langle u,v\rangle is a linear map (Warning: if F=C\mathbb{F}=\mathbb{C}, then uu,vu\mapsto\langle u,v\rangle is not linear).

(b,c) 0,v=v,0=0\langle 0,v\rangle=\langle v,0\rangle=0

(d) u,v+w=u,v+u,w\langle u,v+w\rangle=\langle u,v\rangle+\langle u,w\rangle (second terms are additive.)

(e) u,λv=λˉu,v\langle u,\lambda v\rangle=\bar{\lambda}\langle u,v\rangle

Definition 6.4

An inner product space is a pair of vector space and inner product on it. (v,,)(v,\langle,\rangle). In practice, we will say ”VV is an inner product space” and treat VV as the vector space.

For the remainder of the chapter. V,WV,W are inner product vector spaces…

Definition 6.7

For vVv\in V the norm of VV is given by v:=v,v||v||:=\sqrt{\langle v,v\rangle}

Theorem 6.9

Suppose vVv\in V.

(a) v=0    v=0||v||=0\iff v=0
(b) λv=λ v||\lambda v||=|\lambda|\ ||v||

Proof:

λv2=λv,λv=λv,λv=λλˉv,v||\lambda v||^2=\langle \lambda v,\lambda v\rangle =\lambda\langle v,\lambda v\rangle=\lambda\bar{\lambda}\langle v,v\rangle

So λ2v,v=λ2v2|\lambda|^2 \langle v,v\rangle=|\lambda|^2||v||^2, λv=λ v||\lambda v||=|\lambda|\ ||v||

Definition 6.10

v,uVv,u\in V are orthogonal if v,u=0\langle v,u\rangle=0.

Theorem 6.12 (Pythagorean Theorem)

If u,vVu,v\in V are orthogonal, then u+v2=u2+v||u+v||^2=||u||^2+||v||

Proof:

u+v2=u+v,u+v=u,u+v+v,u+v=u,u+u,v+v,u+v,v=u2+v2\begin{aligned} ||u+v||^2&=\langle u+v,u+v\rangle\\ &=\langle u,u+v\rangle+\langle v,u+v\rangle\\ &=\langle u,u\rangle+\langle u,v\rangle+\langle v,u\rangle+\langle v,v\rangle\\ &=||u||^2+||v||^2 \end{aligned}

Theorem 6.13

Suppose u,vVu,v\in V, v0v\neq 0, set c=<u,v>v2c=\frac{<u,v>}{||v||^2}, then let w=uvvw=u-v\cdot v, then vv and ww are orthogonal.

Theorem 6.14 (Cauchy-Schwarz)

Let u,vVu,v\in V, then <u,v>u v|<u,v>|\leq ||u||\ ||v|| where equality occurs only u,vu,v are parallel…

Proof:

Take the square norm of u=<u,v>u2v+wu=\frac{<u,v>}{||u||^2}v+w.

Theorem 6.17 Triangle Inequality

If u,vVu,v\in V, then u+vu+v||u+v||\leq ||u||+||v||

Proof:

u+v2=<u+v,u+v>=<u,u>+<u,v>+<v,u>+<v,v>=u2+v2+2Re(<u,v>)u2+v2+2<u,v>u2+v2+2u v(u+v)2\begin{aligned} ||u+v||^2&=<u+v,u+v>\\ &=<u,u>+<u,v>+<v,u>+<v,v>\\ &=||u||^2+||v||^2+2Re(<u,v>)\\ &\leq ||u||^2+||v||^2+2|<u,v>|\\ &\leq ||u||^2+||v||^2+2||u||\ ||v||\\ &\leq (||u||+||v ||)^2 \end{aligned}
Last updated on