Skip to Content
Math4201Topology I (Lecture 5) Bonus

Math4201 Topology I (Lecture 5 Bonus)

Comparison of two types of topologies

Let X=R2X=\mathbb{R}^2 and the two types of topologies are:

The “circular topology”:

Tc={Br(p)pR2,r>0}\mathcal{T}_c=\{B_r(p)\mid p\in \mathbb{R}^2,r>0\}

The “rectangle topology”:

Tr={(a,b)×(c,d)a,b,c,dR,a<b,c<d}\mathcal{T}_r=\{(a,b)\times (c,d)\mid a,b,c,d\in \mathbb{R},a<b,c<d\}

Are these two topologies the same?

Comparison of two topologies

Definition of finer and coarser

Let T\mathcal{T} and T\mathcal{T}' be two topologies on XX. We say T\mathcal{T} is finer than T\mathcal{T}' if TT\mathcal{T}'\subseteq \mathcal{T}. We say T\mathcal{T} is coarser than T\mathcal{T}' if TT\mathcal{T}\subseteq \mathcal{T}'. We say T\mathcal{T} and T\mathcal{T}' are equivalent if T=T\mathcal{T}=\mathcal{T}'.

T\mathcal{T} is strictly finer than T\mathcal{T}' if TT\mathcal{T}'\subsetneq \mathcal{T}. (that is, T\mathcal{T}' is finer and not equivalent to T\mathcal{T}) T\mathcal{T} is strictly coarser than T\mathcal{T}' if TT\mathcal{T}\subsetneq \mathcal{T}'. (that is, T\mathcal{T} is coarser and not equivalent to T\mathcal{T}')

Example (discrete topology is finer than the trivial topology)

Let XX be an arbitrary set. The discrete topology is T1=P(X)={UX}\mathcal{T}_1 = \mathcal{P}(X)=\{U \subseteq X\}

The trivial topology is T0={,X}\mathcal{T}_0 = \{\emptyset, X\}

Clearly, T1T0\mathcal{T}_1 \subseteq \mathcal{T}_0.

So the discrete topology is finer than the trivial topology.

Lemma

Tip

Motivating condition:

We want UU be an open set in T\mathcal{T}', then UU has to be open with respect to T\mathcal{T}. In other words, xU,\forall x\in U, \exists some BBB\in \mathcal{B} such that xBUx\in B\subseteq U.

Let T\mathcal{T} and T\mathcal{T}' be topologies on XX associated with bases B\mathcal{B} and B\mathcal{B}'. Then

T is finer than T     for any xX,xBB,BB such that xBB\mathcal{T}\text{ is finer than } \mathcal{T}'\iff \text{ for any } x\in X, x\in B'\in \mathcal{B}', \exists B\in \mathcal{B} \text{ such that } x\in B\subseteq B'

Proof

()(\Rightarrow)

Let BBB'\in \mathcal{B}'. If xBx\in B', then BTB'\in \mathcal{T}' and TT is finer than TT', so BTB'\in \mathcal{T}.

Take T=TBT=\mathcal{T}_{\mathcal{B}}. BB\exists B\in \mathcal{B} such that xBBx\in B\subseteq B'.

()(\Leftarrow)

Let UTU\in \mathcal{T}. Then U=αIBαU=\bigcup_{\alpha \in I} B_\alpha' for some {Bα}αIB\{B_\alpha'\}_{\alpha \in I}\subseteq \mathcal{B}'.

For any BαB_\alpha' and any xBαx\in \mathcal{B}_\alpha', BαB\exists B_\alpha\in \mathcal{B} such that xBαBαx\in B_\alpha\subseteq B_\alpha'.

Then BαB_\alpha' is open set in T\mathcal{T}.

So UU is open in T\mathcal{T}.

TT is finer than TT'.

Back to the example:

For every point in open circle, we can find a rectangle that contains it.

For every point in open rectangle, we can find a circle that contains it.

So these two topologies are equivalent.

Standard topology in R2\mathbb{R}^2

The standard topology in R2\mathbb{R}^2 is the topology generated by the basis Bst={(a,b)×(c,d)a,b,c,dR,a<b,c<d}\mathcal{B}_{st}=\{(a,b)\times (c,d)\mid a,b,c,d\in \mathbb{R},a<b,c<d\}. This is equivalent to the topology generated by the basis Bdisk={(x,y)R2d((x,y),(a,b))<r}\mathcal{B}_{disk}=\{(x,y)\in \mathbb{R}^2|d((x,y),(a,b))<r\}.

Example (lower limit topology is strictly finer than the standard topology)

The lower limit topology is the topology generated by the basis Bll={[a,b)a,bR,a<b}\mathcal{B}_{ll}=\{[a,b)\mid a,b\in \mathbb{R},a<b\}.

This is finer than the standard topology.

Since (a,b)Bst(a,b)\in \mathcal{B}_{st}, we have x(a,b),B=[x,b)Bll\forall x\in (a,b), \exists B=[x,b)\in \mathcal{B}_{ll} such that xB(a,b)x\in B\subsetneq (a,b).

So the lower limit topology is strictly finer than the standard topology.

[0,1)[0,1) is not open in the standard topology. but it is open in the lower limit topology.

Last updated on