Skip to Content
Math4201Topology I (Lecture 21)

Math4201 Topology I (Lecture 21)

Simplicial complexes

Recall from last lecture

Let σ={a0,a1,,an}\sigma=\{a_0,a_1,\dots,a_n\} be a finite set. The nn-dimensional simplex determined by τ\tau is given as:

Δn(a0,a1,,an)={t0a0+t1a1++tnanti0,i=0nti=1}\Delta^n(a_0,a_1,\dots,a_n)=\left\{t_0a_0+t_1a_1+\cdots+t_na_n\mid t_i\geq 0, \sum_{i=0}^n t_i=1\right\}

If we have vertices τ={a0,a1,,ak}\tau=\{a_0,a_1,\dots,a_k\}, τσ\tau\subseteq \sigma, the face of Δn\Delta^n is determined by τ\tau with dimension τ1|\tau|-1.

Δn\Delta^n is the topologized by the subspace topology inherited by the standard topology on Euclidean space Rn\mathbb{R}^n.

Note that there are different ways to of embedding and all give the same topological space.

Abstract simplicial complexes

Definition for abstract simplicial complex

Let V={v0,v1,,vn}V=\{v_0,v_1,\dots,v_n\} be a finite set (set of vertices of a simplicial complex). KK be the collection of subspaces of VV.

  1. σK\sigma\in K and τσ\tau\subseteq \sigma, then τK\tau\in K.
  2. For any vVv\in V, {v}K\{v\}\in K.

Then Xk~=σKΔσ\tilde{X_k}=\bigsqcup_{\sigma\in K}\Delta_\sigma.

Δσ\Delta_\sigma is a simplex of dimension σ1|\sigma|-1.

XKX_K is the topological realization of KK.

Define an equivalence relation on Xk~\tilde{X_k} as follows:

xΔσxΔσx\in \Delta_\sigma\sim x'\in \Delta_{\sigma'} if and only if xΔσσσσ1Δσx\in \Delta_{\sigma'\cap \sigma}^{|\sigma'\cap \sigma|-1}\subseteq \Delta_\sigma and xΔσσσσ1Δσx'\in \Delta_{\sigma'\cap \sigma}^{|\sigma'\cap \sigma|-1}\subseteq \Delta_{\sigma'}.

This just means that the two points have the same barycentric coordinates in the simplex.

Definition of barycentric coordinates

Let σ={a0,a1,,an}\sigma=\{a_0,a_1,\dots,a_n\} be a simplex. The barycentric coordinates of a point xΔσx\in \Delta_\sigma are the coefficients t0,t1,,tnt_0,t_1,\dots,t_n such that:

x=t0a0+t1a1++tnanx=t_0a_0+t_1a_1+\cdots+t_na_n

and ti0t_i\geq 0 and i=0nti=1\sum_{i=0}^n t_i=1.

The point xx is in the simplex Δσ\Delta_\sigma if and only if ti0t_i\geq 0 for all ii.

Example of abstract simplicial complex

Let V={v1,v2,v3,v4,v5}V=\{v_1,v_2,v_3,v_4,v_5\}.

If we want to enclose K={{v1,v2,v3,v4},{v3,v4,v5}}K=\{\{v_1,v_2,v_3,v_4\},\{v_3,v_4,v_5\}\}, we need to fill all the singletons {v1},{v2},{v3},{v4},{v5}\{v_1\},\{v_2\},\{v_3\},\{v_4\},\{v_5\}, all the pairs in KK, {v1,v2},{v1,v3},{v1,v4},{v2,v3},{v2,v4},{v3,v4},{v3,v5},{v4,v5}\{v_1,v_2\},\{v_1,v_3\},\{v_1,v_4\},\{v_2,v_3\},\{v_2,v_4\},\{v_3,v_4\},\{v_3,v_5\},\{v_4,v_5\}, and the triangle {v1,v2,v3},{v1,v2,v4},{v1,v3,v4},{v2,v3,v5}\{v_1,v_2,v_3\}, \{v_1,v_2,v_4\}, \{v_1,v_3,v_4\}, \{v_2,v_3,v_5\}.

The final simplicial complex is Xk~=σKΔ(v1,v2,v3,v4)Δ(v3,v4,v5){v1,v2,v3,v4,v5}\tilde{X_k}=\bigsqcup_{\sigma\in K}\Delta(v_1,v_2,v_3,v_4)\sqcup \Delta(v_3,v_4,v_5)\sqcup \{v_1,v_2,v_3,v_4,v_5\}.

We use Δ(v1,v2,v3,v4)\Delta(v_1,v_2,v_3,v_4) to denote the simplex with vertices v1,v2,v3,v4v_1,v_2,v_3,v_4.

Defining maps on abstract simplicial complexes

Let KK be an abstract simplicial complex. V={v1,v2,,vm}V=\{v_1,v_2,\dots,v_m\}

A map π:Xk~XK\pi:\tilde{X_k}\to X_K is a quotient map

XKX_K is equipped with the quotient topology.

Let f:VRmf:V\to \mathbb{R}^m, then ui=f(vi)u_i=f(v_i).

Xk~=σKΔσ\tilde{X_k}=\bigsqcup_{\sigma\in K}\Delta_\sigma is the disjoint union of all simplices in KK.

For σ={vi0,,vik}\sigma=\{v_{i_0},\dots,v_{i_k}\}, we have a map ΔσR\Delta_\sigma\to \mathbb{R}^\ell given by [ti0u0+ti1u1++tikuktj0,j=0ktj=1][t_{i_0}u_0+t_{i_1}u_1+\cdots+t_{i_k}u_k\mid t_j\geq 0, \sum_{j=0}^k t_j=1].

This is well-defined because the coefficients tjt_j are uniquely determined by the vertices vi0,,vikv_{i_0},\dots,v_{i_k}.

This induces F:Xk~RF:\tilde{X_k}\to \mathbb{R}^\ell. This map is continuous because FΔσF\vert_{\Delta_\sigma} is continuous for all σK\sigma\in K.

Recall that if for any xXKx\in X_K, the map FF restricted to π1(x)\pi^{-1}(x) is constant, then there is a unique continuous map gg satisfying F=gπF=g\circ \pi.

In fact, this condition is satisfied and there is such a map GG.

Example of map on abstract simplicial complexes

Consider the previous example of abstract simplicial complex.

Let f:VRf:V\to \mathbb{R} by f(vi)=if(v_i)=i.

Then f(Δ{v1,v2,v3,v4})=[1,4]f(\Delta_{\{v_1,v_2,v_3,v_4\}})=[1,4]

Then f(Δ{v1,v3})=[1,3]f(\Delta_{\{v_1,v_3\}})=[1,3]

Last updated on