Skip to Content
Math4201Topology I (Lecture 16)

Math4201 Lecture 16 (Topology I)

Continuous maps

The following maps are continuous:

F+:R×RR,(x,y)x+yF_+:\mathbb{R}\times \mathbb{R}\to \mathbb{R}, (x,y)\to x+y F:R×RR,(x,y)xyF_-:\mathbb{R}\times \mathbb{R}\to \mathbb{R}, (x,y)\to x-y F×:R×RR,(x,y)x×yF_\times:\mathbb{R}\times \mathbb{R}\to \mathbb{R}, (x,y)\to x\times y F÷:R×(R{0})R,(x,y)xyF_\div:\mathbb{R}\times (\mathbb{R}\setminus \{0\})\to \mathbb{R}, (x,y)\to \frac{x}{y}

Composition of continuous functions is continuous

Let f,g:XRf,g:X\to \mathbb{R} be continuous functions. XX is topological space.

Then the following functions are continuous:

H:XR×R,x(f(x),g(x))H:X\to \mathbb{R}\times \mathbb{R}, x\to (f(x),g(x))

Since the composition of continuous functions is continuous, we have

F+H:XR,xf(x)+g(x)F_+\circ H:X\to \mathbb{R}, x\to f(x)+g(x) FH:XR,xf(x)g(x)F_-\circ H:X\to \mathbb{R}, x\to f(x)-g(x) F×H:XR,xf(x)×g(x)F_\times\circ H:X\to \mathbb{R}, x\to f(x)\times g(x)

are all continuous.

More over, if g(x)0g(x)\neq 0 for all xXx\in X, then

F÷H:XR,xf(x)g(x)F_\div\circ H:X\to \mathbb{R}, x\to \frac{f(x)}{g(x)}

is continuous following the similar argument.

Defining metric for functions

Definition of bounded metric space

A metric space (Y,d)(Y,d) is bounded if there is MR0M\in\mathbb{R}^{\geq 0} such that

y,yY,d(y,y)<M\forall y,y'\in Y, d(y,y')<M

Example of bounded metric space

If (Y,d)(Y,d) is a bounded metric space, let MM be a positive constant, then d=min{M,d}\overline{d}=\min\{M,d\} is a bounded metric space.

In fact, the metric topology by dd and d\overline{d} are the same. (proved in homeworks)

Let XX be a topological space. and (Y,d)(Y,d) be a bounded metric space.

Map(X,Y){f:XYf is a map}\operatorname{Map}(X,Y)\coloneqq \{f:X\to Y|f \text{ is a map}\}

Define ρ:Map(X,Y)×Map(X,Y)R\rho:\operatorname{Map}(X,Y)\times \operatorname{Map}(X,Y)\to \mathbb{R} by

ρ(f,g)=supxXd(f(x),g(x))\rho(f,g)=\sup_{x\in X} d(f(x),g(x))

Lemma space of map with metric defined is a metric space

(Map(X,Y),ρ)(\operatorname{Map}(X,Y),\rho) is a metric space.

Proof

Proof is similar to showing that the square metric is a metric on Rn\mathbb{R}^n.

ρ(f,g)=0    supxX(d(f(x),g(x)))=0\rho(f,g)=0\implies \sup_{x\in X}(d(f(x),g(x)))=0

Since d(f(x),g(x))0d(f(x),g(x))\geq 0, this implies that d(f(x),g(x))=0d(f(x),g(x))=0 for all xXx\in X.

The triangle inequality of being metric for ρ\rho follows from the similar properties for dd.

Lemma continuous maps form a closed subset of the space of maps

Let (Map(X,Y),ρ)(\operatorname{Map}(X,Y),\rho) be a metric space defined before.

and

Z={f:XYf is a continuous map}Z=\{f:X\to Y|f \text{ is a continuous map}\}

Then ZZ is a closed subset of (Map(X,Y),ρ)(\operatorname{Map}(X,Y),\rho).

Proof

We need to show that Z=Z\overline{Z}=Z.

Since Map(X,Y)\operatorname{Map}(X,Y) is a metric space, this is equivalent to showing that: Let fn:XYZf_n:X\to Y\in Z be a sequence of continuous maps,

Which is to prove the uniform convergence,

fnfMap(X,Y)f_n \to f \in \operatorname{Map}(X,Y)

Then we want to show that ff is also continuous.

It is to show that for any open subspace VV of YY, f1(V)f^{-1}(V) is open in XX.

Take x0f1(V)x_0\in f^{-1}(V), we’d like to show that there is an open neighborhood UU of x0x_0 such that Uf1(V)U\subseteq f^{-1}(V).

Since x0f1(V)x_0\in f^{-1}(V), then f(x0)Vf(x_0)\in V. By metric definition, there is r>0r>0 such that Br(f(x0))VB_r(f(x_0))\subseteq V.

Take NN to be large enough such ρ(fN(x),f(x))<r3\rho(f_N(x), f(x)) < \frac{r}{3}

So xX\forall x\in X, d(f(x),fN(x))<r3d(f(x),f_N(x))<\frac{r}{3}

Since fNf_N is continuous, fN1(Br/3(f(x0)))f_N^{-1}(B_{r/3}(f(x_0))) is an open set UXU\subseteq X containing x0x_0.

Take xUx\in U, d(f(x),f(x0))<d(f(x),fN(x0))+d(fN(x),fN(x0))+d(fN(x0),f(x0))d(f(x),f(x_0))<d(f(x),f_N(x_0))+d(f_N(x),f_N(x_0))+d(f_N(x_0),f(x_0)) using triangle inequality.

Note that,

d(f(x),fN(x))<r3d(f(x),f_N(x))<\frac{r}{3} (using NN large enough),

d(fN(x),fN(x0))<r3d(f_N(x),f_N(x_0))<\frac{r}{3} (using xUx\in U, then fN(x)Br/3(fN(x0))f_N(x)\in B_{r/3}(f_N(x_0)), so d(fN(x),fN(x0))<r3d(f_N(x),f_N(x_0))<\frac{r}{3}),

d(fN(x0),f(x0))<r3d(f_N(x_0),f(x_0))<\frac{r}{3} (using NN large enough),

So d(f(x),f(x0))<r3+r3+r3=rd(f(x),f(x_0))<\frac{r}{3}+\frac{r}{3}+\frac{r}{3}=r.

So f(x)Br(f(x0))    xf1(Br(f(x0)))    xf1(V)    Uf1(V)f(x)\in B_r(f(x_0))\implies x\in f^{-1}(B_r(f(x_0)))\implies x\in f^{-1}(V)\implies U\subseteq f^{-1}(V).

So f1(V)f^{-1}(V) is open in XX.

Last updated on