Skip to Content
Math4201Topology I (Lecture 14)

Math4201 Topology I (Lecture 14)

Metric topology

Product topology and metric topology

If XX and YY are metrizable spaces, then the product space X×YX\times Y is metrizable.

If XX is metrizable, then the subspace AXA\subset X equipped with subspace topology is metrizable.

Proof

Let dd be a metric on XX. Then define dd' be the restriction of dd to AA:

d:A×AR+d':A\times A\to \mathbb{R}+ d(x,y)=d(x,y)d'(x,y)=d(x,y)

x,yAXx,y\in A\subseteq X

dd' is a metric on AA. Since the metric topology on AA associated to dd' is the same as the subspace topology.

Note that for any xAx\in A and r>0r>0

Brd(x)A=Brd(x)(*)B_r^{d}(x)\cap A=B_r^{d'}(x)\tag{*}

A basis for metric topology on AA is given by:

B={Brd(x)xA,r>0,rR}\mathcal{B}=\{B_r^{d'}(x)|x\in A,r>0,r\in \mathbb{R}\}

A basis for the subspace topology on AA is given by:

B={Brd(x)AxA,r>0,rR}\mathcal{B}'=\{B_r^{d}(x)\cap A|x\in A,r>0,r\in \mathbb{R}\}

Since (*) holds, BB\mathcal{B}\subseteq \mathcal{B}'.

This shows that subspace topology on AA is finer than the metric topology on AA.

We need to show that for any Brd(x)B_r^{d}(x) with xXx\in X and yBrd(x)Ay\in B_r^{d}(x)\cap A, we have r>0r'>0 such that yBrd(y)Brd(x)Ay\in B_r^{d'}(y)\subseteq B_r^{d}(x)\cap A.

Use triangle inequality, we have r=rd(x,y)>0r'=r-d(x,y)>0 such that yBrd(y)Brd(x)Ay\in B_r^{d'}(y)\subseteq B_r^{d}(x)\cap A.

Proposition on sequence and closure

Let XX be a topological space and AXA\subseteq X. Then the following holds:

If there is a sequence {xn}n=1\{x_n\}_{n=1}^\infty such that xnAx_n\in A and xnxx_n\to x, then xAx\in \overline{A}. (xx may not be in AA)

The reverse holds if XX is a metric space. That is, if XX is a metric space and xAx\in \overline{A}, then there is a sequence {xn}n=1\{x_n\}_{n=1}^\infty such that xnAx_n\in A and xnxx_n\to x.

Example of non-metrizable space

For the second part of the claim

Let X=R×R×R×X=\mathbb{R}\times \mathbb{R}\times \mathbb{R}\times \cdots with the product topology over infinite product.

X=Map(N,R)={(x1,x2,x3,)xiR,iN}X=\text{Map}(\mathbb{N},\mathbb{R})=\{(x_1,x_2,x_3,\cdots)|x_i\in \mathbb{R},i\in \mathbb{N}\}.

The box topology on XX is the topology generated by:

B={(a1,b1)×(a2,b2)×(a3,b3)×ai,biR,iN}\mathcal{B}=\{(a_1,b_1)\times (a_2,b_2)\times (a_3,b_3)\times \cdots|a_i,b_i\in \mathbb{R},i\in \mathbb{N}\}

It is easy to check that this is a basis.

Take A=R>0×R>0×R>0×={(x1,x2,x3,)xi>0}A=\mathbb{R}^{> 0}\times \mathbb{R}^{> 0}\times \mathbb{R}^{> 0}\times \cdots=\{(x_1,x_2,x_3,\cdots)|x_i> 0\}.

A=R0×R0×R0×={(x1,x2,x3,)xi0}\overline{A}=\mathbb{R}^{\geq 0}\times \mathbb{R}^{\geq 0}\times \mathbb{R}^{\geq 0}\times \cdots=\{(x_1,x_2,x_3,\cdots)|x_i\geq 0\}.

In particular, (0,0,0,)A(0,0,0,\cdots)\in \overline{A}

Take a basis element B=(a1,b1)×(a2,b2)×(a3,b3)×BB=(a_1,b_1)\times (a_2,b_2)\times (a_3,b_3)\times \cdots\in \mathcal{B} containing (0,0,0,)(0,0,0,\cdots). This means that ai<0<bia_i<0<b_i Then (b12,b22,b32,)BA(\frac {b_1}{2},\frac {b_2}{2},\frac {b_3}{2},\cdots)\in B\cap A.

This shows that (0,0,0,)A(0,0,0,\cdots)\in \overline{A}.

We claim that there is no sequence {xn}n=1\{x_n\}_{n=1}^\infty such that xnAx_n\in A and xn(0,0,0,)x_n\to (0,0,0,\cdots).

We proceed by contradiction and suppose that there is such a sequence {xn}n=1\{x_n\}_{n=1}^\infty such that xnAx_n\in A and xn(0,0,0,)x_n\to (0,0,0,\cdots).

Since xnAx_n\in A, we have vn=(a1n,a2n,a3n,)v_n=(a_1^n,a_2^n,a_3^n,\cdots) with ain>0a_i^n>0 for all iNi\in \mathbb{N}.

Consider the following open set around (0,0,0,)(0,0,0,\cdots):

C=(a112,a112)×(a212,a212)×(a312,a312)×C=(-\frac{a_1^1}{2},\frac{a_1^1}{2})\times (-\frac{a_2^1}{2},\frac{a_2^1}{2})\times (-\frac{a_3^1}{2},\frac{a_3^1}{2})\times \cdots

We claim that vnCv_n\notin C. Otherwise, we should have aij2<ajn<ajj2-\frac{a_i^j}{2}<a_j^n<\frac{a_j^j}{2} for all iNi\in \mathbb{N}.

But this doesn’t hold for j=nj=n. This shows that vn(0,0,0,)v_n\cancel{\to} (0,0,0,\cdots). Which is a contradiction.


For the first part of the claim. Let {xn}n=1A\{x_n\}_{n=1}^\infty\subset A converge to xx. Then for any open set UU of xx, we have NN such that xnUx_n\in U for nNn\geq N.

In particular, UAU\cap A is non-empty because it has xnx_n for large enough nn.

So xAx\in \overline{A}.

Last updated on