Skip to Content
Math4201Topology I (Lecture 13)

Math4201 Topology I (Lecture 13)

Metic spaces

Three different metrics on Rn\mathbb{R}^n

Euclidean metric:

d(x,y)=i=1n(xiyi)2d(x,y)=\sqrt{\sum_{i=1}^n (x_i-y_i)^2}

Square metric:

d(x,y)=maxi=1nxiyid(x,y)=\max_{i=1}^n |x_i-y_i|

Manhattan metric:

d(x,y)=i=1nxiyid(x,y)=\sum_{i=1}^n |x_i-y_i|

So to prove our proposition, we need to show that any pair of metrics dd and dd' with basis generated by balls defined

B={Br(d)(x)xX,r>0,rR}\mathcal{B}=\{B_r^{(d)}(x)|x\in X,r>0,r\in \mathbb{R}\}

and

B={Br(d)(x)xX,r>0,rR}\mathcal{B}'=\{B_r^{(d')}(x)|x\in X,r>0,r\in \mathbb{R}\}

are equivalent.

Proposition: The metrics induce the same topology on Rn\mathbb{R}^n

The three metrics induce the same topology on Rn\mathbb{R}^n, and it’s the standard topology.

Lemma of equivalent topologies

If T\mathcal{T} and T\mathcal{T}' are two topologies on XX, we say T\mathcal{T} and T\mathcal{T}' are equivalent to each other if and only if the following two conditions are satisfied:

  1. B1T,B2T\forall B_1\in \mathcal{T}, \exists B_2\in \mathcal{T}' such that xB1,xB2B1\forall x\in B_1, \exists x\in B_2\subseteq B_1.
  2. B2T,B1T\forall B_2\in \mathcal{T}', \exists B_1\in \mathcal{T} such that xB2,xB1B2\forall x\in B_2, \exists x\in B_1\subseteq B_2.

Lemma of equivalent metrics

Let dd and dd' be two metrics on XX. If the following holds, then the metric topology associated to dd and dd' are equivalent.

  1. xX,δ>0,ϵ>0\forall x\in X, \forall \delta>0, \exists \epsilon>0 such that Bδ(x)Bϵ(x)B_\delta(x)\subseteq B_\epsilon(x)
  2. xX,ϵ>0,δ>0\forall x\in X, \forall \epsilon>0, \exists \delta>0 such that Bϵ(x)Bδ(x)B_\epsilon(x)\subseteq B_\delta(x)

Proof

To apply the lemma, we try to compute the three metrics on Rn\mathbb{R}^n.

u=(u1,u2,,un),v=(v1,v2,,vn)Rnu=(u_1,u_2,\dots,u_n), v=(v_1,v_2,\dots,v_n)\in \mathbb{R}^n

For Euclidean metric:

d(u,v)=i=1n(uivi)2d(u,v)=\sqrt{\sum_{i=1}^n (u_i-v_i)^2}

For square metric:

ρ(u,v)=maxi=1nuivi\rho(u,v)=\max_{i=1}^n |u_i-v_i|

For Manhattan metric:

m(u,v)=i=1nuivim(u,v)=\sum_{i=1}^n |u_i-v_i|

First we will show that dd and ρ\rho are equivalent.

Note that

maxi=1nuivii=1n(uivi)2\max_{i=1}^n |u_i-v_i|\leq \sqrt{\sum_{i=1}^n (u_i-v_i)^2}

So uBr(d)(x),d(u,v)<r    ρ(u,v)<r\forall u\in B_r^{(d)}(x), d(u,v)<r\implies \rho(u,v)<r

So uBr(ρ)(x)u\in B_r^{(\rho)}(x).

Br(d)(u)Br(ρ)(u)B_r^{(d)}(u)\subseteq B_r^{(\rho)}(u)

Note that

i=1n(uivi)2i=1nmax{uivi}2=n×max{uivi}\sqrt{\sum_{i=1}^n (u_i-v_i)^2}\leq \sqrt{\sum_{i=1}^n max\{|u_i-v_i|\}^2}=\sqrt{n}\times max\{|u_i-v_i|\}

So uBr/n(ρ)(x),ρ(u,v)<r/n    d(u,v)<r\forall u\in B_{r/\sqrt{n}}^{(\rho)}(x), \rho(u,v)<r/\sqrt{n}\implies d(u,v)<r

So uBr(d)(x)u\in B_r^{(d)}(x).

So Br/n(ρ)(x)Br(d)(x)B_{r/\sqrt{n}}^{(\rho)}(x)\subseteq B_r^{(d)}(x).

imagine two square capped circle inside

Then we will show that ρ\rho and mm are equivalent.

Observing that

maxi=1nuivii=1nuivin×maxi=1nuivi\max_{i=1}^n |u_i-v_i|\leq \sum_{i=1}^n |u_i-v_i|\leq n\times \max_{i=1}^n |u_i-v_i|

Then we have

Br/n(ρ)(x)Br(m)(x)Bn(ρ)(x)B_{r/n}^{(\rho)}(x)\subseteq B_r^{(m)}(x)\subseteq B_n^{(\rho)}(x)

imagine two square capped a diamonds inside

Finally, we will show that the topology generated by the square metric is the same as the product topology on Rn\mathbb{R}^n.

Recall the basis for the product topology on Rn\mathbb{R}^n with standard topology.

B={(a1,b1)×(a2,b2)××(an,bn)ai,biR,ai<bi}\mathcal{B}=\{(a_1,b_1)\times (a_2,b_2)\times \cdots \times (a_n,b_n)|a_i,b_i\in \mathbb{R},a_i<b_i\}

Let x=(x1,x2,,xn)(a1,b1)×(a2,b2)××(an,bn)x=(x_1,x_2,\dots,x_n)\in (a_1,b_1)\times (a_2,b_2)\times \cdots \times (a_n,b_n).

Let δ=mini=1n{xiai,xibi}\delta=\min_{i=1}^n \{|x_i-a_i|,|x_i-b_i|\}.

Then xBδ(ρ)(x)(a1,b1)×(a2,b2)××(an,bn)x\in B_\delta^{(\rho)}(x)\subseteq (a_1,b_1)\times (a_2,b_2)\times \cdots \times (a_n,b_n).

In the other direction, let xBr(ρ)(x)x\in B_r^{(\rho)}(x), x=(x1,x2,,xn)x=(x_1,x_2,\dots,x_n).

Then Br(ρ)(x)(x1r,x1+r)×(x2r,x2+r)××(xnr,xn+r)B_r^{(\rho)}(x)\subseteq (x_1-r,x_1+r)\times (x_2-r,x_2+r)\times \cdots \times (x_n-r,x_n+r).

This is an element of B\mathcal{B}, by combining the two directions, we have the standard topology is the same as the topology generated by the square metric.

Proposition of metric induced product topology

Let (X,d),(Y,d)(X,d),(Y,d') be two metric spaces with metric topology T,T\mathcal{T},\mathcal{T}'. On X×YX\times Y, we can define a metric ρ\rho by ρ((x,y),(x,y))max{d(x,x),d(y,y)}\rho((x,y),(x',y'))\coloneqq \max\{d(x,x'),d'(y,y')\}, (x,y),(x,y)X×Y(x,y),(x',y')\in X\times Y.

Then this metric topology on X×YX\times Y is the same as the product topology on X×YX\times Y.

Note

Product of metrizable topological spaces is metrizable.

Last updated on