Skip to Content
Math416Complex Variables (Lecture 8)

Math416 Lecture 8

Review

Sequences of Functions

Let fn:GCf_n: G \to \mathbb{C} be a sequence of functions.

Convergence Pointwise

Definition:

Let zGz\in G, ϵ>0\forall \epsilon > 0, NN\exists N \in \mathbb{N} such that nN\forall n \geq N, fn(z)f(z)<ϵ|f_n(z) - f(z)| < \epsilon.

Convergence Uniformly

Definition:

ϵ>0\forall \epsilon > 0, zG\forall z\in G, NN\exists N \in \mathbb{N} such that nN\forall n \geq N, fn(z)f(z)<ϵ|f_n(z) - f(z)| < \epsilon.

Convergence Locally Uniformly

Definition:

ϵ>0\forall \epsilon > 0, zG\forall z\in G, NN\exists N \in \mathbb{N} such that nN\forall n \geq N, fn(z)f(z)<ϵ|f_n(z) - f(z)| < \epsilon.

Convergence Uniformly on Compact Sets

Definition: CG\forall C\subset G that is compact, ϵ>0,NN s.t. nN,zC,fn(z)f(z)<ϵ\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N, \forall z\in C, |f_n(z) - f(z)| < \epsilon

Power Series

Definition:

n=0cn(zz0)n\sum_{n=0}^{\infty} c_n (z - z_0)^n

z0z_0 is the center of the power series.

Theorem of Power Series

If a power series converges at z0z_0, then it converges absolutely at every point of Br(z0)\overline{B_r(z_0)} that is strictly inside the disk of convergence.

Continue on Power Series

Review on lim sup\limsup

The lim sup(an)\limsup(a_n) anRa_n\in\mathbb{R} is defined as the sup of subsequence of (an)(a_n) as nn approaches infinity.

It has the following properties that is useful for proving the remaining parts for this course.

Suppose (an)1(a_n)_1^\infty is a sequence of real numbers

  1. If ρR\rho\in \mathbb{R} satisfies that ρ<lim supnan\rho<\limsup_{n\to\infty}a_n, then {an:an>ρ}\{a_n : a_n > \rho\} is infinite.
  2. If ρR\rho\in \mathbb{R} satisfies that ρ>lim supnan\rho>\limsup_{n\to\infty}a_n, then {an:an>ρ}\{a_n : a_n > \rho\} is finite.

Limits of Power Series

Theorem 5.12

Cauchy-Hadamard Theorem:

The radius of convergence of the power series is given by n=0an(zz0)n\sum_{n=0}^{\infty} a_n (z - z_0)^n is given by

1R=lim supnan1/n\frac{1}{R} = \limsup_{n\to\infty} |a_n|^{1/n}

Proof

Suppose (bn)n=0(b_n)^{\infty}_{n=0} is a sequence of real numbers such that limnbn\lim_{n\to\infty} b_n may nor may not exists by (1)n(11n)(-1)^n(1-\frac{1}{n}).

The limit superior of (bn)(b_n) is defined as

sn=supknbks_n = \sup_{k\geq n} b_k

sns_n is a decreasing sequence, by completeness of R\mathbb{R}, every bounded sequence has a limit in R\mathbb{R}.

So sns_n converges to some limit sRs\in\mathbb{R}.

Without loss of generality, this also holds for infininum of sns_n.

Forward direction:

We want to show that the radius of convergence of n=0an(zz0)n\sum_{n=0}^{\infty} a_n (z - z_0)^n is greater than or equal to 1lim supnan1/n\frac{1}{\limsup_{n\to\infty} |a_n|^{1/n}}.

Since n=01zn=11z\sum_{n=0}^{\infty} 1z^n=\frac{1}{1-z} for z<1|z|<1. Assume lim supnan1/n\limsup_{n\to\infty} |a_n|^{1/n} is finite, then n=0an(zz0)n\sum_{n=0}^{\infty} a_n (z - z_0)^n converges absolutely at z0z_0.

Let ρ>lim supnan1/n\rho>\limsup_{n\to\infty} |a_n|^{1/n}, then NN\exists N \in \mathbb{N} such that nN\forall n \geq N, an1/nρ|a_n|^{1/n}\leq \rho. (By property of lim sup\limsup)

So 1R=lim supnan1/nρ\frac{1}{R}=\limsup_{n\to\infty} |a_n|^{1/n}\leq\rho

So R1ρR\geq\frac{1}{\rho}

Backward direction:

Suppose z>R|z|>R, then \exists number z|z| such that z>1ρR|z|>\frac{1}{\rho}\geq R.

So ρ<lim supnan1/n\rho<\limsup_{n\to\infty} |a_n|^{1/n}

This means that \exists infinitely many njn_js such that anj1/nj>ρ|a_{n_j}|^{1/n_j}>\rho

So anjznj>ρnjznj|a_{n_j}z^{n_j}|>\rho^{n_j}|z|^{n_j}

Series n=1anzn\sum_{n=1}^{\infty} a_nz^n diverges, each individual term is not going to 00.

So n=0an(zz0)n\sum_{n=0}^{\infty} a_n (z - z_0)^n does not converge at zz if z>1ρR|z|> \frac{1}{\rho}\geq R

So R=1ρR=\frac{1}{\rho}.

What if zz0=R|z-z_0|=R?

For n=0zn\sum_{n=0}^{\infty} z^n, the radius of convergence is 11.

It diverges eventually on the circle of convergence.

For n=01(n+1)2zn\sum_{n=0}^{\infty} \frac{1}{(n+1)^2}z^n, the radius of convergence is 11.

This converges everywhere on the circle of convergence.

For n=01n+1zn\sum_{n=0}^{\infty} \frac{1}{n+1}z^n, the radius of convergence is 11.

This diverges at z=1z=1 (harmonic series) and converges at z=1z=-1 (alternating harmonic series).

Theorem 5.15

Differentiation of power series

Suppose n=0an(zz0)n\sum_{n=0}^{\infty} a_n (z - z_0)^n has a positive radius of convergence RR. Define f(z)=n=0an(zz0)nf(z)=\sum_{n=0}^{\infty} a_n (z - z_0)^n, then ff is holomorphic on BR(0)B_R(0) and f(z)=n=1nan(zz0)n1=k=0(k+1)ak+1(zz0)kf'(z)=\sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1}=\sum_{k=0}^{\infty} (k+1)a_{k+1} (z - z_0)^k.

Here below is the proof on book, which will be covered in next lecture.

Proof

Without loss of generality, assume z0=0z_0=0. Let RR be the radius of convergence for the two power series: n=0anzn\sum_{n=0}^{\infty} a_n z^n and n=1nanzn1\sum_{n=1}^{\infty} n a_n z ^{n-1}. The two power series have the same radius of convergence R|R|.

For z,wC,nNz,w\in \mathbb{C}, n\in \N, znwn=(zw)k=0n1zkwnk1z^n-w^n=(z-w)\sum_{k=0}^{n-1} z^k w^{n-k-1}

Let z1BR(0)z_1\in B_R(0), z1<ρ<R|z_1|<\rho<R for some ρR\rho\in\mathbb{R}.

f(z)f(z1)zz1g(z1)=1zz1[n=0anznn=0anz1n]n=1nanz1n1=n=1an[znz1nzz1nz1n1]=n=1an[(k=0n1zkz1nk1)nz1n1]=n=2an[k=1n1z1nk1(zkz1k)]\begin{aligned} \frac{f(z)-f(z_1)}{z-z_1}-g(z_1)&=\frac{1}{z-z_1}\left[\sum_{n=0}^\infty a_n z^n -\sum_{n=0}^\infty a_n z_1^n\right]-\sum_{n=1}^{\infty} n a_n z_1 ^{n-1}\\ &=\sum_{n=1}^{\infty} a_n \left[\frac{z^n-z_1^n}{z-z_1}-nz_1^{n-1}\right]\\ &=\sum_{n=1}^{\infty} a_n \left[\left(\sum_{k=0}^{n-1}z^kz_1^{n-k-1}\right)-nz_1^{n-1}\right]\\ &=\sum_{n=2}^{\infty} a_n \left[\sum_{k=1}^{n-1}z_1^{n-k-1}(z^k-z^k_1)\right] \end{aligned}

Using the lemma again we get

zkz1k=zz1j=0k1zjz1kj1zz1j=0k1zjz1kj1kρk1zz1\begin{aligned} |z^k-z_1^k|&=|z-z_1|\left|\sum_{j=0}^{k-1}z_jz_1^{k-j-1}\right|\\ &\leq |z-z_1| \sum_{j=0}^{k-1}|z_j||z_1^{k-j-1}|\\ &\leq k\rho^{k-1}|z-z_1| \end{aligned}

Then,

f(z)f(z1)zz1g(z1)=n=2an[k=1n1z1nk1(zkz1k)]n=2an[k=1n1z1nk1zkz1k]n=2an[k=1n1ρnk1(kρk1zz1)]=zz1n=2an[n(n1)2ρn2]\begin{aligned} \left|\frac{f(z)-f(z_1)}{z-z_1}-g(z_1)\right|&=\left|\sum_{n=2}^{\infty} a_n \left[\sum_{k=1}^{n-1}z_1^{n-k-1}(z^k-z^k_1)\right]\right|\\ &\leq \sum_{n=2}^{\infty} |a_n| \left[\sum_{k=1}^{n-1}|z_1|^{n-k-1}|z^k-z_1^k|\right]\\ &\leq \sum_{n=2}^{\infty} |a_n| \left[ \sum_{k=1}^{n-1} \rho^{n-k-1} (k\rho^{k-1}|z-z_1|) \right]\\ &=|z-z_1|\sum_{n=2}^\infty|a_n|\left[\frac{n(n-1)}{2}\rho^{n-2}\right] \end{aligned}

One can use ratio test to find that n=2an[n(n1)2ρn2]\sum_{n=2}^\infty|a_n|\left[\frac{n(n-1)}{2}\rho^{n-2}\right] converges, we denote the sum using MM

So f(z)f(z1)zz1g(z1)Mzz1\left|\frac{f(z)-f(z_1)}{z-z_1}-g(z_1)\right|\leq M|z-z_1| for z<ρ|z|<\rho.

So limzz1f(z)f(z1)zz1=g(z1)\lim_{z\to z_1}\frac{f(z)-f(z_1)}{z-z_1}=g(z_1).

Last updated on