Skip to Content
Math416Complex Variables (Lecture 21)

Math416 Lecture 21

Chapter 9: Generalized Cauchy’s Theorem

Simple connectedness

Proposition 9.1

Let ϕ\phi be a continuous nowhere vanishing function from [a,b]R[a,b]\subset\mathbb{R} to C{0}\mathbb{C}\setminus\{0\}. Then there exists a continuous function ψ:[a,b]C\psi:[a,b]\to\mathbb{C} such that eψ(t)=ϕ(t)e^{\psi(t)}=\phi(t) for all t[a,b]t\in[a,b].

Moreover, ψ\psi is uniquely determined up to an additive integer multiple of 2πiZ2\pi i \mathbb{Z}.

Proof:

Uniqueness:

Suppose ϕ1\phi_1 and ϕ2\phi_2 are both continuous functions so that eϕ1(t)=ϕ(t)=eϕ2(t)e^{\phi_1(t)}=\phi(t)=e^{\phi_2(t)} for all t[a,b]t\in[a,b].

Then eϕ1(t)ϕ2(t)=1e^{\phi_1(t)-\phi_2(t)}=1 for all t[a,b]t\in[a,b]. So ϕ1(t)ϕ2(t)=2kπi\phi_1(t)-\phi_2(t)=2k\pi i for some kZk\in\mathbb{Z}.

Existence:

Case 1: Assume range(ϕ)Hrange(\phi)\subset H where HH is an open half-plane with the origin 0H0\in \partial H.

We know there is a branch l(z)l(z) of logz\log z defined on HH with Log(z)=logz+iθ(z)Log(z)=\log|z|+i\theta(z) for some arg(z)(α,α+π)\arg(z)\in(\alpha,\alpha+\pi).

Let ψ(t)=l(ϕ(t))\psi(t)=l(\phi(t)).

Then eψ(t)=el(ϕ(t))=ϕ(t)e^{\psi(t)}=e^{l(\phi(t))}=\phi(t). and ψ\psi is continuous.

Case 2: By compactness of [a,b][a,b], there exists a partition a=t0<t1<<tn=ba=t_0<t_1<\cdots<t_n=b such that, for each 0jn10\leq j\leq n-1, ϕ([tj,tj+1])\phi([t_j,t_{j+1}]) is contained in some open half plane HjH_j with the origin 0Hj0\in \partial H_j.

Recall:

Compactness: A set is compact if and only if every open cover has a finite subcover.

Let s[a,b]s\in [a,b] and there exists ϵ(s)>0\epsilon(s)>0 such that ϕ((sϵ(s),s+ϵ(s)))\phi((s-\epsilon(s),s+\epsilon(s))) is contained in some open half plane.

[a,b]=s[a,b](sϵ(s),s+ϵ(s))[a,a+ϵ(a))(bϵ(b),b]=j=1n(sjϵ(sj),sj+ϵ(sj))[a,a+ϵ(a))(bϵ(b),b]\begin{aligned} [a,b]&=\bigcup_{s\in[a,b]}(s-\epsilon(s),s+\epsilon(s))\cup[a,a+\epsilon(a))\cup(b-\epsilon(b),b] \\ &=\bigcup_{j=1}^n(s_j-\epsilon(s_j),s_j+\epsilon(s_j))\cup[a,a+\epsilon(a))\cup(b-\epsilon(b),b] \end{aligned}

We choose tj[sjϵ(sj),sj+ϵ(sj)][sj+1ϵ(sj+1),sj+1+ϵ(sj+1)]t_j\in[s_j-\epsilon(s_j),s_j+\epsilon(s_j)]\cup[s_{j+1}-\epsilon(s_{j+1}),s_{j+1}+\epsilon(s_{j+1})] for each j=1,,n1j=1,\cdots,n-1.

On each interval [tj,tj+1][t_j,t_{j+1}], we can find a ψj(t)\psi_j(t) such that eψj(t)=ϕ(t)e^{\psi_j(t)}=\phi(t), ψj(t)\psi_j(t) is continuous on [tj,tj+1][t_j,t_{j+1}]. And we can choose ψj+1(tj+1)=ψj(tj+1)\psi_{j+1}(t_{j+1})=\psi_j(t_{j+1}).

Defined ψ(t)={ψj(t),t[tj,tj+1]}\psi(t)=\{\psi_j(t), t\in[t_j,t_{j+1}]\} for j=1,,n1j=1,\cdots,n-1.

QED

Increment of a log and argument

If fγ:[a,b]C{0}f\circ\gamma:[a,b]\to\mathbb{C}\setminus\{0\} is continuous, then ψ:[a,b]C\exists \psi:[a,b]\to\mathbb{C} such that eψ(t)=f(γ(t))e^{\psi(t)}=f(\gamma(t)) for all t[a,b]t\in[a,b].

We defined the increment in logf\log f on γ\gamma as Δ(logf,γ)=ψ(b)ψ(a)\Delta(\log f,\gamma)=\psi(b)-\psi(a).

The increment in argf\arg f on γ\gamma is defined as Δ(argf,γ)=Im[ψ(b)]Im[ψ(a)]\Delta(\arg f,\gamma)=Im[\psi(b)]-Im[\psi(a)].

If γ\gamma is a closed curve, then fγ(a)=fγ(b)f\circ\gamma(a)=f\circ\gamma(b). Then Δ(logf,γ)2πiZ\Delta(\log f,\gamma)\in 2\pi i\mathbb{Z}, Δ(argf,γ)2πZ\Delta(\arg f,\gamma)\in 2\pi\mathbb{Z}.

Assume γ\gamma is piecewise continuous and ff is continuous and f(z)0f(z)\neq 0 for all zγz\in\gamma.

Δ(logf,γ)=ψ(b)ψ(a)=abddtlogf(γ(t))dt=abf(γ(t))γ(t)f(γ(t))dt=γf(z)f(z)dz\begin{aligned} \Delta(\log f,\gamma)&=\psi(b)-\psi(a) \\ &=\int_a^b\frac{d}{dt}\log f(\gamma(t))dt \\ &=\int_a^b\frac{f'(\gamma(t))\gamma'(t)}{f(\gamma(t))}dt \\ &=\int_\gamma\frac{f'(z)}{f(z)}dz \end{aligned}

If γ\gamma is closed, then Δ(logf,γ)=γf(z)f(z)dz=0\Delta(\log f,\gamma)=\int_\gamma\frac{f'(z)}{f(z)}dz=0, Δ(argf,γ)=1iγf(z)f(z)dz=0\Delta(\arg f,\gamma)=\frac{1}{i}\int_\gamma\frac{f'(z)}{f(z)}dz=0.

Special case:

When f(z)=zz0f(z)=z-z_0, z0range(γ)z_0\notin range(\gamma), then Δ(arg(zz0),γ)2πZ\Delta(\arg (z-z_0),\gamma)\in 2\pi\mathbb{Z}.

The winding number of γ\gamma around z0z_0 is defined as n(γ,z0)=12πiΔ(arg(zz0),γ)n(\gamma,z_0)=\frac{1}{2\pi i}\Delta(\arg (z-z_0),\gamma).

also the same as the number of times γ\gamma winds around z0z_0 counterclockwise.

Winding number is always zero outside the curve.

Contour

A contour is a formed piecewise combination of piecewise continuous closed curves with integer coefficients.

Γ=j=1pnjγj\Gamma=\sum_{j=1}^p n_j\gamma_j

where γj\gamma_j are piecewise continuous closed curves and njZn_j\in\mathbb{Z}.

A contour is called a simple if the winding number of Γ\Gamma is zero or one.

Last updated on