Skip to Content
Math416Complex Variables (Lecture 20)

Math416 Lecture 20

Laurent Series and Isolated Singularities

Isolated Singularities

ff has an isolated singularity at z0z_0 if ff is analytic everywhere in some punctured disk 0<zz0<R0 < |z - z_0| < R except at z0z_0 itself.

Removable Singularities

We call z0z_0 a removable singularity if there exists gO(Br(z0))g\in O(B_r(z_0)) such that f(z)=g(z)f(z) = g(z) for all zBr(z0){z0}z\in B_r(z_0) \setminus \{z_0\}.

Poles

We call z0z_0 a pole if there are finitely many terms with negative powers in the Laurent series expansion of ff about z0z_0.

Essential Singularities

We call z0z_0 an essential singularity if there are infinitely many terms with negative powers in the Laurent series expansion of ff about z0z_0.

Theorem: Criterion for a removable singularity (Riemann removable singularity theorem)

Suppose ff has an isolated singularity at z0z_0. Then it is removable if and only if ff is bounded on a punctured disk centered at z0z_0.

Theorem 8.10 (Casorati-Weierstrass Theorem)

If z0z_0 is an essential singularity of ff, then r>0\forall r>0, f(Br(z0){z0})=C\overline{f(B_r(z_0)\setminus\{z_0\})}= \mathbb{C}.

Proof:

Suppose ww\notin closure range fo ff on Br(z0){z0}B_r(z_0)\setminus\{z_0\}, then ϵ>0\exists \epsilon > 0 such that Bϵ(w)f(Br(z0){z0})=B_\epsilon(w)\cap f(B_r(z_0)\setminus\{z_0\})=\emptyset.

g(z)=1/(f(z)w)g(z)=1/(f(z)-w) and g(z)1ϵ|g(z)|\leq \frac{1}{\epsilon}, which is bounded. By Riemann removable singularity theorem, gg has a removable singularity. So f(z)=1g(z)+wf(z)=\frac{1}{g(z)}+w is holomorphic on Br(z0){z0}B_r(z_0)\setminus\{z_0\}.

Suppose g(z0)0g(z_0)\neq 0, then ff has a removable singularity at z0z_0.

Suppose g(z0)=0g(z_0)=0, then ff has a pole at z0z_0.

This contradicts the assumption that z0z_0 is an essential singularity.

QED

Theorem 8.11 (Picard’s Theorem)

If z0z_0 is an essential singularity of ff, then r>0\forall r>0, f(Br(z0){z0})f(B_r(z_0)\setminus\{z_0\}) contains every point in C\mathbb{C} except possibly one.

Definition: Residue

Suppose ff has an isolated singularity at z0z_0. The residue of ff at z0z_0, write resz0(f)res_{z_0}(f), is the coefficient of (zz0)1(z-z_0)^{-1} in the Laurent series expansion of ff about z0z_0.

Preview:

Residue Theorem:

Suppose GG is a simply connected domain, FF is a finite set in GG hh is holomorphic on GFG\setminus F. Let γ\gamma be a simple closed curve in GG, containing λ1,λ2,,λN\lambda_1, \lambda_2, \cdots, \lambda_N from FF. Then

γh(z)dz=2πij=1Nresλj(h)\int_\gamma h(z) dz = 2\pi i \sum_{j=1}^N res_{\lambda_j}(h)

Special case:

When γ=Br(z0)\gamma=\partial B_r(z_0), f(z)=n=an(zz0)nf(z)=\sum_{n=-\infty}^\infty a_n(z-z_0)^n converges on A(z0;0,R)A(z_0;0,R), then

γf(z)dz=2πin=anγ(zz0)ndz=2πia1\int_{\gamma} f(z) dz = 2\pi i \sum_{n=-\infty}^\infty a_n \int_{\gamma} (z-z_0)^n dz=2\pi i a_{-1}

Example:

  1. Find residue of f(z)=sinzz4f(z)=\frac{\sin z}{z^4} at z=0z=0.

sinz=zz33!+z55!\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots

sinzz4=1z413!z+z5!\frac{\sin z}{z^4} = \frac{1}{z^4} - \frac{1}{3!z} + \frac{z}{5!} - \cdots

resz=0(sinzz4)=13!res_{z=0}(\frac{\sin z}{z^4}) = \frac{1}{3!}

  1. Find residue of f(z)=1(z+2)(z5)f(z)=\frac{1}{(z+2)(z-5)} at z=5z=5 and z=2z=-2.

resz=5(f(z))=(z5)11z+2z=5=17res_{z=5}(f(z))=(z-5)^{-1}\cdot\frac{1}{z+2}|_{z=5}=\frac{1}{7}

resz=2(f(z))=(z+2)11z5z=2=17res_{z=-2}(f(z))=(z+2)^{-1}\cdot\frac{1}{z-5}|_{z=-2}=-\frac{1}{7}

Corollary of residue

Suppose ff has an simple pole at z0z_0. Then resz0(f)=limzz0(zz0)f(z)res_{z_0}(f)=\lim_{z\to z_0}(z-z_0)f(z).

Proof:

f(z)=a1(zz0)1+n=0an(zz0)nf(z)=a_{-1}(z-z_0)^{-1}+\sum_{n=0}^\infty a_n(z-z_0)^n, (zz0)f(z)=a1+n=0an(zz0)n+1(z-z_0)f(z)=a_{-1}+\sum_{n=0}^\infty a_n(z-z_0)^{n+1}

limzz0(zz0)f(z)=limzz0(zz0)a1+limzz0(zz0)n=0an(zz0)n=a1\lim_{z\to z_0}(z-z_0)f(z)=\lim_{z\to z_0}(z-z_0)\cdot a_{-1}+\lim_{z\to z_0}(z-z_0)\cdot\sum_{n=0}^\infty a_n(z-z_0)^n=a_{-1}

QED

Find residue for poles with higher order

Suppose ff has a pole of order 2 at z0z_0. Then f(z)=a2(zz0)2+a1zz0+n=0an(zz0)nf(z)=\frac{a_{-2}}{(z-z_0)^2}+\frac{a_{-1}}{z-z_0}+\sum_{n=0}^\infty a_n(z-z_0)^n, (zz0)2f(z)=a2+(zz0)a1+n=0an(zz0)n+2(z-z_0)^2f(z)=a_{-2}+(z-z_0)a_{-1}+\sum_{n=0}^\infty a_n(z-z_0)^{n+2}

Method 1:

resz0(f)=a1=limzz0f(z)limzz0(zz0)2f(z)(zz0)res_{z_0}(f)=a_{-1}=\lim_{z\to z_0}\frac{f(z)-\lim_{z\to z_0}(z-z_0)^2f(z)}{(z-z_0)}

Method 2:

resz0(f)=1(n1)!dn1dzn1(zz0)nf(z)z=z0res_{z_0}(f)=\frac{1}{(n-1)!}\frac{d^{n-1}}{dz^{n-1}}(z-z_0)^nf(z)|_{z=z_0}

So suppose ff has a pole of order nn at z0z_0. Then resz0(f)=dn1dzn1(zz0)nf(z)z=z0res_{z_0}(f)=\frac{d^{n-1}}{dz^{n-1}}(z-z_0)^nf(z)|_{z=z_0}

Proof:

f(z)=an(zz0)n+an+1(zz0)n1++a1zz0+m=0am(zz0)mf(z)=\frac{a_{-n}}{(z-z_0)^n}+\frac{a_{-n+1}}{(z-z_0)^{n-1}}+\cdots+\frac{a_{-1}}{z-z_0}+\sum_{m=0}^\infty a_m(z-z_0)^m

(zz0)nf(z)=an+(zz0)an+1++(zz0)n1a1+m=0am(zz0)m+n(z-z_0)^nf(z)=a_{-n}+(z-z_0)a_{-n+1}+\cdots+(z-z_0)^{n-1}a_{-1}+\sum_{m=0}^\infty a_m(z-z_0)^{m+n}

dn1dzn1(zz0)nf(z)=(n1)!a1+m=0am(m+n)(m+n1)(m+1)(zz0)m1\frac{d^{n-1}}{dz^{n-1}}(z-z_0)^nf(z)=(n-1)!a_{-1}+\sum_{m=0}^\infty a_m(m+n)(m+n-1)\cdots(m+1)(z-z_0)^{m-1}

limzz01(n1)!dn1dzn1(zz0)nf(z)=a1\lim_{z\to z_0}\frac{1}{(n-1)!}\frac{d^{n-1}}{dz^{n-1}}(z-z_0)^nf(z)=a_{-1}

QED

Chapter 9: Generalized Cauchy’s Theorem

Simple connectedness

Proposition 9.1

Let ϕ\phi be a continuous nowhere vanishing function from [a,b]R[a,b]\subset\mathbb{R} to C{0}\mathbb{C}\setminus\{0\}. Then there exists a continuous function ψ:[a,b]C\psi:[a,b]\to\mathbb{C} such that eψ(t)=ϕ(t)e^{\psi(t)}=\phi(t) for all t[a,b]t\in[a,b].

Moreover, ψ\psi is uniquely determined up to an additive integer multiple of 2πiZ2\pi i \mathbb{Z}.

Proof:

Uniqueness:

Suppose ϕ1\phi_1 and ϕ2\phi_2 are both continuous functions so that eϕ1(t)=ϕ(t)=eϕ2(t)e^{\phi_1(t)}=\phi(t)=e^{\phi_2(t)} for all t[a,b]t\in[a,b].

Then eϕ1(t)ϕ2(t)=1e^{\phi_1(t)-\phi_2(t)}=1 for all t[a,b]t\in[a,b]. So ϕ1(t)ϕ2(t)=2kπi\phi_1(t)-\phi_2(t)=2k\pi i for some kZk\in\mathbb{Z}.

Existence:

Continue on Thursday.

QED

Last updated on