Skip to Content
Math416Complex Variables (Lecture 18)

Math416 Lecture 18

Chapter 8: Laurent Series and Isolated Singularities

8.1 Laurent Series

Definition of Laurent Series

n=cn(zz0)n\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n

where cnc_n are complex coefficients.

Let R2=1lim supncn1/nR_2=\frac{1}{\limsup_{n\to\infty} |c_n|^{1/n}}, then the Laurent series converges on zz0<R2|z-z_0|<R_2

Where R1=lim supncn1/nR_1=\limsup_{n\to-\infty} |c_n|^{-1/n}, if zz0>R1|z-z_0|>R_1, the Laurent series diverges.

If R1R2R_1\leq R_2, then the Laurent series converges on A(z0;R1,R2)={z:R1<zz0<R2}A(z_0;R_1,R_2)=\{z:R_1<|z-z_0|<R_2\}, the Laurent series converges absolutely on A(z0;R1,R2)A(z_0;R_1,R_2)

By Weierstrass, the limit is a holomorphic function on A(z0;R1,R2)A(z_0;R_1,R_2)

If R1<r<R2R_1<r<R_2, then

C(z0,r)f(z)dz=n=cnC(z0,r)(zz0)ndz\int_{C(z_0,r)} f(z) dz = \sum_{n=-\infty}^{\infty} c_n \int_{C(z_0,r)} (z-z_0)^n dz

Additional Proof

C(z0,r)(zz0)ndz={2πi,n=10,n1\int_{C(z_0,r)} (z-z_0)^n dz = \begin{cases} 2\pi i, & n=-1 \\0, & n\neq -1\end{cases}

Proof:

γ(t)=z0+reit,t[0,2π]\gamma(t)=z_0+re^{it}, t\in[0,2\pi]

C(z0,r)(zz0)ndz=02π(z0+reitz0)nireitdt=irn+102πei(n+1)tdt={2πi,n=102πei(n+1)tdt=1i(n+1)ei(n+1)t02π=0,n1\begin{aligned} \int_{C(z_0,r)} (z-z_0)^n dz &= \int_0^{2\pi} (z_0+re^{it}-z_0)^n ire^{it} dt \\ &= ir^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt \\ &= \begin{cases} 2\pi i, & n=-1 \\ \int_0^{2\pi} e^{i(n+1)t} dt = \frac{1}{i(n+1)}e^{i(n+1)t}\Big|_0^{2\pi} = 0, & n\neq -1 \end{cases} \end{aligned}

So,

C(z0,r)f(z)dz=n=cnC(z0,r)(zz0)ndz=c12πi\int_{C(z_0,r)} f(z) dz = \sum_{n=-\infty}^{\infty} c_n \int_{C(z_0,r)} (z-z_0)^n dz=c_{-1}2\pi i

And,

C(z0,r)f(z)(zz0)kdz=n=cnC(z0,r)(zz0)n+kdz=c1k2πi\int_{C(z_0,r)} f(z)(z-z_0)^k dz = \sum_{n=-\infty}^{\infty} c_n \int_{C(z_0,r)} (z-z_0)^{n+k} dz = c_{-1-k}2\pi i

So,

2πicj=C(z0,r)f(z)(zz0)j1dz2\pi i c_j = \int_{C(z_0,r)} f(z)(z-z_0)^{-j-1} dz

Cauchy integral

Recall Cauchy integral formula:

f(z)=γϕ(ξ)ξzdξf(z) = \int_{\gamma} \frac{\phi(\xi)}{\xi-z} d\xi

where γ\gamma is a closed curve.

Suppose zz0>R|z-z_0|>R,

1ξz=1ξz0(zz0)=1zz011ξz0zz0=1zz0n=0(ξz0)n(zz0)n=m=1(ξz0)m1(zz0)m\begin{aligned} \frac{1}{\xi-z}&=\frac{1}{\xi-z_0-(z-z_0)}\\ &=-\frac{1}{z-z_0}\frac{1}{1-\frac{\xi-z_0}{z-z_0}}\\ &=-\frac{1}{z-z_0}\sum_{n=0}^{\infty} \frac{(\xi-z_0)^n}{(z-z_0)^n}\\ &=-\sum_{m=1}^{\infty} (\xi-z_0)^{m-1}(z-z_0)^{-m} \end{aligned}

So,

f(z)=γϕ(ξ)ξzdξ=γm=1(ξz0)m1(zz0)mϕ(ξ)dξ=m=1(zz0)mγ(ξz0)m1ϕ(ξ)dξ\begin{aligned} f(z) &= \int_{\gamma} \frac{\phi(\xi)}{\xi-z} d\xi\\ &= -\int_{\gamma} \sum_{m=1}^{\infty} (\xi-z_0)^{m-1}(z-z_0)^{-m}\phi(\xi) d\xi\\ &=-\sum_{m=1}^{\infty} (z-z_0)^{-m} \int_{\gamma} (\xi-z_0)^{m-1} \phi(\xi) d\xi \end{aligned}

So the Cauchy integral γϕ(ξ)ξzdξ\int_{\gamma} \frac{\phi(\xi)}{\xi-z} d\xi is a convergent power series in Bd(z0,γ)(z0)B_{d(z_0,\gamma)}(z_0) and is a convergent Laurent series (with just negative powers) in CBmaxξγd(z0,ξ)(z0)\mathbb{C}\setminus B_{\max_{\xi\in \gamma} d(z_0,\xi)}(z_0)

Theorem 8.4 Cauchy Theorem for Annulus

Suppose ff is holomorphic on A(z0;R1,R2)A(z_0;R_1,R_2), Let Cr={z:zz0=r}C_r=\{z:|z-z_0|=r\}, oriented counterclockwise. Then I(r)=Crf(z)dzI(r)=\int_{C_r} f(z) dz is independent of rr for R1<r<R2R_1<r<R_2

Proof:

If integrand is continuous with respect to rr and continuous with respect to tt, then we can differentiate under the integral sign (Check after class, on Appendix 4?)

I(r)=02πf(z0+reit)ireitdtdIdr=i02πr[f(z0+reit)reit]dt\begin{aligned} I(r)&=\int_0^{2\pi} f(z_0+re^{it})ire^{it}dt\\ \frac{dI}{dr}&=i\int_0^{2\pi}\frac{\partial}{\partial r}[f(z_0+re^{it})re^{it}]dt \end{aligned} r[f(z0+reit)ireit]=if(z0+reit)eit+if(z0+reit)eit\frac{\partial}{\partial r}[f(z_0+re^{it})ire^{it}]=if'(z_0+re^{it})e^{it}+if(z_0+re^{it})e^{it} t[f(z0+reit)eit]=f(z0+reit)ireit+f(z0+reit)ireit\frac{\partial}{\partial t}[f(z_0+re^{it})e^{it}]=f'(z_0+re^{it})ire^{it}+f(z_0+re^{it})ire^{it}

This gives

r[f(z0+reit)ireit]=t[f(z0+reit)eit]\frac{\partial}{\partial r}[f(z_0+re^{it})ire^{it}]=\frac{\partial}{\partial t}[f(z_0+re^{it})e^{it}]

So,

dIdr=i02πr[f(z0+reit)ireit]dt=i02πt[f(z0+reit)eit]dt=0\frac{dI}{dr}=i\int_0^{2\pi}\frac{\partial}{\partial r}[f(z_0+re^{it})ire^{it}]dt=i\int_0^{2\pi}\frac{\partial}{\partial t}[f(z_0+re^{it})e^{it}]dt=0

is a integration on a closed curve, so it is 00.

So, I(r)I(r) is constant.

QED

Let ff be holomorphic on A(z0;R1,R2)A(z_0;R_1,R_2). Let Cr={z:zz0=r}C_r=\{z:|z-z_0|=r\}, oriented counterclockwise. Let wA(z0;R1,R2)w\in A(z_0;R_1,R_2). Choose R1<r1<wz0<r2<R2R_1<r_1<|w-z_0|<r_2<R_2 such that wA(z0;r1,r2)w\in A(z_0;r_1,r_2). Then,

f(w)=12πiCr2f(z)zwdz12πiCr1f(z)zwdzf(w)=\frac{1}{2\pi i}\int_{C_{r_2}} \frac{f(z)}{z-w} dz-\frac{1}{2\pi i}\int_{C_{r_1}} \frac{f(z)}{z-w} dz

Proof:

Define g(z)={f(z)f(w)zw,zwf(w),z=wg(z)=\begin{cases} \frac{f(z)-f(w)}{z-w}, & z\neq w \\ f'(w), & z=w \end{cases}

Then gg is holomorphic on A(z0;r1,r2)A(z_0;r_1,r_2) since ff is analytic at ww, f(z)=n=0f(n)(w)n!(zw)nf(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(w)}{n!}(z-w)^n

So,

f(z)f(w)=f(w)+f(w)(zw)+n=2f(n)(w)n!(zw)nf(w)=f(w)(zw)+n=2f(n)(w)n!(zw)nf(z)-f(w)=f(w)+f'(w)(z-w)+\sum_{n=2}^{\infty} \frac{f^{(n)}(w)}{n!}(z-w)^n-f(w)=f'(w)(z-w)+\sum_{n=2}^{\infty} \frac{f^{(n)}(w)}{n!}(z-w)^n

So,

f(z)f(w)zw=f(w)+n=1f(n)(w)n!(zw)n1\frac{f(z)-f(w)}{z-w}=f'(w)+\sum_{n=1}^{\infty} \frac{f^{(n)}(w)}{n!}(z-w)^{n-1}

So,

limzwf(z)f(w)zw=f(w)\lim_{z\to w} \frac{f(z)-f(w)}{z-w}=f'(w)

So Cr2g(z)dz=Cr1g(z)dz\int_{C_{r_2}} g(z) dz=\int_{C_{r_1}} g(z) dz,

Cr2f(z)zwdzf(w)Cr21zwdz=Cr1f(z)zwdzf(w)Cr11zwdz\int_{C_{r_2}} \frac{f(z)}{z-w} dz-f(w)\int_{C_{r_2}} \frac{1}{z-w} dz=\int_{C_{r_1}} \frac{f(z)}{z-w} dz-f(w)\int_{C_{r_1}} \frac{1}{z-w} dz

Since Cr21zwdz=2πi\int_{C_{r_2}} \frac{1}{z-w} dz=2\pi i and Cr11zwdz=0\int_{C_{r_1}} \frac{1}{z-w} dz=0, (using Cauchy integral theorem on convex region)

f(w)=12πiCr2f(z)zwdz12πiCr1f(z)zwdzf(w)=\frac{1}{2\pi i}\int_{C_{r_2}} \frac{f(z)}{z-w} dz-\frac{1}{2\pi i}\int_{C_{r_1}} \frac{f(z)}{z-w} dz

QED

Since Cr1f(z)zwdz\int_{C_{r_1}} \frac{f(z)}{z-w} dz is a Laurent series in negative powers which converges in CBr1(z0)\mathbb{C}\setminus \overline{B_{r_1}(z_0)}, we can conclude that

f(z)f(z) is given by a convergent Laurent series n=an(zz0)n\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n in CBr1(z0)\mathbb{C}\setminus \overline{B_{r_1}(z_0)} where an=12πiCrf(z)(zz0)1ndza_n=\frac{1}{2\pi i}\int_{C_r} \frac{f(z)}{(z-z_0)^{-1-n}} dz

Laurent series converges in A(z0;R1,R2)A(z_0;R_1,R_2)

Last updated on