Skip to Content
Math416Complex Variables (Lecture 16)

Math416 Lecture 16

Answer checking for exam

Q1

Cauchy riemann equations:

ux=vyanduy=vx\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}\quad\text{and}\quad\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}

Liouville’s Theorem:

Any non-constant entire function is unbounded.

So cos(z)\cos(z) is unbounded in C\mathbb{C}.

Log(e2)=lne2+iarg(e2)=2+πi\text{Log}(-e^2) = \ln|-e^2| + i\arg(-e^2) = -2 + \pi i

At any point z0C{0}z_0\in \mathbb{C}\setminus\{0\}, there is an open set z0UCz_0\in U\subset \mathbb{C} and a branch of logarithm defined on UU.

Q2

Power series expansion

Q3

limit superior

Q4

Bound integral

Q5

fnf_n converges pointwise to ff on UU if zU\forall z\in U, ϵ>0\forall \epsilon > 0, N\exists N s.t. nN\forall n\geq N, fn(z)f(z)<ϵ|f_n(z)-f(z)| < \epsilon.

fnf_n converges uniformly to ff on UU if ϵ>0\forall \epsilon > 0, N\exists N s.t. nN\forall n\geq N, zU\forall z\in U, fn(z)f(z)<ϵ|f_n(z)-f(z)| < \epsilon.

Show for z<1|z|<1, fn(z)=znf_n(z)=z^n converges pointwise to 00 but not uniformly to 00.

(a) pointwise convergence:

zn=zn<ϵ|z^n| = |z|^n < \epsilon if n>lnϵlnzn > \frac{\ln\epsilon}{\ln|z|}.

(b) uniform convergence:

No matter how small ϵ\epsilon is, there is always a zz s.t. zn>ϵ|z^n| > \epsilon for all nn.

Continue from last lecture

Schwarz’s Lemma

Let ff be an holomorphic function that maps the unit disk D(0,1)D(0,1) to itself and f(0)=0f(0)=0. Then f(z)z|f(z)|\leq |z| for all zD(0,1)z\in D(0,1)

Schwarz-Pick’s Lemma

(see exercise 7.17.2)

Let ff be an holomorphic function that maps the unit disk D(0,1)D(0,1) to itself. Then z,wD(0,1)\forall z,w\in D(0,1),

f(z)f(w)1f(w)f(z)zw1wz\left|\frac{f(z)-f(w)}{1-\overline{f(w)}f(z)}\right|\leq \left|\frac{z-w}{1-\overline{w}z}\right|

Recall the Möbius map

ϕα(z)=zα1αz\phi_\alpha(z) = \frac{z-\alpha}{1-\overline{\alpha}z}

is a homeomorphism of the unit disk.

So we can use the Möbius to restate the Schwarz-Pick’s Lemma as:

ϕf(w)(f(z))ϕw(z)|\phi_{f(w)}(f(z))|\leq |\phi_w(z)|

Suppose we defined g=ϕf(w)fϕwg=\phi_{f(w)}\circ f\circ \phi_{-w}, then gg is a holomorphic function that maps the unit disk to itself and g(0)=0g(0)=0.

By Schwarz’s Lemma, let zD(0,1)z\in D(0,1), g(z)z|g(z)|\leq |z|.

ϕf(w)(f(ϕw(z)))z|\phi_{f(w)}(f(\phi_{-w}(z)))|\leq |z|

Let ζ=ϕw(z)\zeta=\phi_{-w}(z), then ζ=z+w1+wzD(0,1)\zeta=\frac{z+w}{1+\overline{w}z}\in D(0,1), so ζ=ϕw(z)|\zeta|=\phi_w(z).

Extension of Schwarz-Pick’s Lemma in hyperbolic metric

Suppose we defined the distance on C\mathbb{C} as d(z,w)=zw1wzd(z,w)=|\frac{z-w}{1-\overline{w}z}|.

We claim that this is a metric on C\mathbb{C}. z,w,vC\forall z,w,v\in \mathbb{C}:

(a) d(z,w)=0d(z,w)=0 if and only if z=wz=w and d(z,w)>0d(z,w)> 0 otherwise.

(b) d(z,w)=d(w,z)d(z,w)=d(w,z).

(c) d(z,w)d(z,v)+d(v,w)d(z,w)\leq d(z,v)+d(v,w).

We call this metric the Pseudo hyperbolic metric.

Hyperbolic metric:

Hypdist(z,w)=tanh1(d(z,w)) \text{Hypdist}(z,w)=\tanh^{-1}(d(z,w))

Where d(z,w)=zw1wzd(z,w)=|\frac{z-w}{1-\overline{w}z}|

So we can restate the Schwarz-Pick’s Lemma as:

d(f(z),f(w))d(z,w)d(f(z),f(w))\leq d(z,w)

And in hyperbolic metric, it becomes:

Hypdist(f(z),f(w))Hypdist(z,w)\text{Hypdist}(f(z),f(w))\leq \text{Hypdist}(z,w)

Suppose the equality holds for Schwarz-Pick’s Lemma, then g(z)=τz|g(z)|=\tau z where τ=1|\tau|=1.

Computation ignored here.

Then ff is a Möbius map that is automorphism of the unit disk.

Existence of harmonic conjugate

Suppose f=u+ivf=u+iv is holomorphic on a domain UCU\subset \mathbb{C}. Then u=Re(f)u=\text{Re}(f) is harmonic on UU. That is Δu=2ux2+2uy2=0\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0.

Theorem 7.18

Let uu be a real harmonic function on a convex domain GCG\subset \mathbb{C}. Then there exists gO(G)g\in O(G) such that Re(g)=u\text{Re}(g)=u. Moreover, gg is unique up to an additive imaginary constant.

Proof:

Existence next time.

Uniqueness:

Suppose g,hO(G)g,h\in O(G) s.t. Re(g)=Re(h)=u\text{Re}(g)=\text{Re}(h)=u.

Reg=u=Reh\text{Re}g=u=\text{Re}h on GG.

If we can show that (gh)=0(g-h)'=0 on GG, then we win.

Let g=u+ivg=u+iv, h=u+iwh=u+iw.

By the Cauchy-Riemann equations,

x(gh)=xi(vw)=i(uyuy)=0\begin{aligned} \frac{\partial}{\partial x}(g-h)&=\frac{\partial}{\partial x}i(v-w)\\ &=i\left(\frac{\partial u}{\partial y}-\frac{\partial u}{\partial y}\right)\\ &=0 \end{aligned}

Suppose G=C{0}G=\mathbb{C}\setminus\{0\}, then u=lnz=12ln(x2+y2)u=\ln|z|=\frac{1}{2}\ln(x^2+y^2), which is harmonic.

Continue next time.

Last updated on