Skip to Content
Math416Complex Variables (Lecture 12)

Math 416 Lecture 12

Continue on last class

Cauchy’s Theorem on triangles

Let TT be a triangle in C\mathbb{C} and ff be holomorphic on TT. Then

Tf(z)dz=0\int_T f(z) dz = 0

Cauchy’s Theorem for Convex Sets

Let’s start with a simple case: f(z)=1f(z)=1.

For any closed curve γ\gamma in UU, we have

γf(z)dz=abf(γ(t))γ(t)dti=1nf(γ(ti))γ(ti)Δti\int_\gamma f(z) dz = \int_a^b f(\gamma(t)) \gamma'(t) dt \approx \sum_{i=1}^n f(\gamma(t_i)) \gamma'(t_i) \Delta t_i

Definition of a convex set

A set UU is convex if for any two points z1,z2Uz_1, z_2 \in U, the line segment [z1,z2]U[z_1, z_2] \subset U.

Let O(U)O(U) be the set of all holomorphic functions on UU.

Definition of primitive

Say ff has a primitive on UU. If there exists a holomorphic function gg on UU such that g(z)=f(z)g'(z)=f(z) for all zUz \in U, then gg is called a primitive of ff on UU.

Cauchy’s Theorem for a Convex region

Cauchy’s Theorem holds if ff has a primitive on a convex region UU.

γf(z)dz=γ[ddzg(z)]dz=g(z1)g(z2)\int_\gamma f(z) dz = \int_\gamma \left[\frac{d}{dz}g(z)\right] dz = g(z_1)-g(z_2)

Since the curve is closed, z1=z2z_1=z_2, so γf(z)dz=0\int_\gamma f(z) dz = 0.

Proof:

It is sufficient to prove that if UU is convex, ff is holomorphic on UU, then f=gf=g' for some gg holomorphic on UU.

We pick a point z0Uz_0\in U and define g(z)=[z0,z]f(ξ)dξg(z)=\int_{[z_0,z]}f(\xi)d\xi.

We claim gO(U)g\in O(U) and g=fg'=f.

Let z1z_1 close to zz, since ff is holomorphic on UU, using the Goursat’s theorem, we can find a triangle TT with ξT\xi\in T and zTz\in T and TUT\subset U.

0=z0zf(ξ)dξ+zz1f(ξ)dξ=g(z)g(z1)+zz1f(ξ)dξ+z1z0f(ξ)dξg(z)g(z1)zz1=1zz1(zz1f(ξ)dξ)g(z1)g(z0)z1z0f(z1)=1z1z0(zz1f(ξ)dξ)f(z1)=1z1z0(zz1f(ξ)f(z1)dξ)=I\begin{aligned} 0&=\int_{z_0}^{z}f(\xi)d\xi+\int_{z}^{z_1}f(\xi)d\xi\\ &=g(z)-g(z_1)+\int_{z}^{z_1}f(\xi)d\xi+\int_{z_1}^{z_0}f(\xi)d\xi\\ \frac{g(z)-g(z_1)}{z-z_1}&=-\frac{1}{z-z_1}\left(\int_{z}^{z_1}f(\xi)d\xi\right)\\ \frac{g(z_1)-g(z_0)}{z_1-z_0}-f(z_1)&=-\frac{1}{z_1-z_0}\left(\int_{z}^{z_1}f(\xi)d\xi\right)-f(z_1)\\ &=-\frac{1}{z_1-z_0}\left(\int_{z}^{z_1}f(\xi)-f(z_1)d\xi\right)\\ &=I \end{aligned}

Use the fact that ff is holomorphic on UU, then ff is continuous on UU, so limzz1f(z)=f(z1)\lim_{z\to z_1}f(z)=f(z_1).

There exists a δ>0\delta>0 such that zz1<δ|z-z_1|<\delta implies f(z)f(z1)<ϵ|f(z)-f(z_1)|<\epsilon.

So

I1z1z0zz1f(ξ)f(z1)dξ<ϵz1z0zz1dξ=ϵ|I|\leq\frac{1}{z_1-z_0}\int_{z}^{z_1}|f(\xi)-f(z_1)|d\xi<\frac{\epsilon}{z_1-z_0}\int_{z}^{z_1}d\xi=\epsilon

So I0I\to 0 as z1zz_1\to z.

Therefore, g(z1)=f(z1)g'(z_1)=f(z_1) for all z1Uz_1\in U.

QED

Cauchy’s Theorem for a disk

Let UU be the open set, fO(U)f\in O(U). Let CC be a circle inside UU and zz be a point inside CC.

Then

f(z)=12πiCf(ξ)dξξzdξf(z)=\frac{1}{2\pi i}\int_C\frac{f(\xi)d\xi}{\xi-z} d\xi

Proof:

Let CϵC_\epsilon be a circle with center zz and radius ϵ\epsilon inside CC.

Claim:

Cϵf(ξ)dξξz=Cf(ξ)dξξz\int_{C_\epsilon}\frac{f(\xi)d\xi}{\xi-z}=\int_{C}\frac{f(\xi)d\xi}{\xi-z}

We divide the integral into four parts:

Integral on a disk

Notice that f(ξ)ξz\frac{f(\xi)}{\xi-z} is holomorphic whenever f(ξ)Uf(\xi)\in U and ξC{z}\xi\in \mathbb{C}\setminus\{z\}.

So we can apply Cauchy’s theorem to the integral on the inside square.

Cϵf(ξ)dξξz=0\int_{C_\epsilon}\frac{f(\xi)d\xi}{\xi-z}=0

Since 12πiCϵ1ξzdξ=1\frac{1}{2\pi i}\int_{C_\epsilon}\frac{1}{\xi-z}d\xi=1, σ=ϵeit+z0\sigma=\epsilon e^{it}+z_0 and σ=ϵeit\sigma'=\epsilon e^{it}, we have

/* TRACK LOST*/

Cϵf(ξ)dξξz=02πf(σ)dσσz=2πif(z)\int_{C_\epsilon}\frac{f(\xi)d\xi}{\xi-z}=\int_0^{2\pi}\frac{f(\sigma)d\sigma}{\sigma-z}=2\pi i f(z)

QED

Last updated on