Skip to Content
Math416Complex Variables (Lecture 10)

Math416 Lecture 10

Fast reload on Power Series

Suppose n=0an\sum_{n=0}^\infty a_n converges absolutely. (n=0an<\sum_{n=0}^\infty |a_n|<\infty)

Then rearranging the terms of the series does not affect the sum of the series.

For any permutation σ\sigma of the set of positive integers, n=0aσ(n)=n=0an\sum_{n=0}^\infty a_{\sigma(n)}=\sum_{n=0}^\infty a_n.

Proof:

Let ϵ>0\epsilon>0, then NN\exists N\in\mathbb{N} such that nN\forall n\geq N,

n=Nan<ϵ\sum_{n=N}^\infty |a_n|<\epsilon

So there exists N0N_0 such that if MN0M\geq N_0, then

n=N0Man<ϵ\sum_{n=N_0}^M |a_n|<\epsilon

for any first MM terms of σ\sigma, we choose N0N_0 such that all the terms (no overlapping with the first MM terms) on the tail is less than ϵ\epsilon.

n=1an=n=1Man+n=M+1an\sum_{n=1}^{\infty} a_n=\sum_{n=1}^{M} a_n+\sum_{n=M+1}^\infty a_n

Let K>NK>N, L>N0L>N_0,

n=1Kann=1Laσ(n)<2ϵ\left|\sum_{n=1}^{K}a_n-\sum_{n=1}^{L}a_{\sigma(n)}\right|<2\epsilon

QED

Chapter 4 Complex Integration

Complex Integral

Definition 6.1

If ϕ(t)\phi(t) is a complex function defined on [a,b][a,b], then the integral of ϕ(t)\phi(t) over [a,b][a,b] is defined as

abϕ(t)dt=abRe{ϕ(t)}dt+iabIm{ϕ(t)}dt\int_a^b \phi(t) dt = \int_a^b \text{Re}\{\phi(t)\} dt + i\int_a^b \text{Im}\{\phi(t)\} dt

Theorem 6.3 (Triangle Inequality)

If ϕ(t)\phi(t) is a complex function defined on [a,b][a,b], then

abϕ(t)dtabϕ(t)dt\left|\int_a^b \phi(t) dt\right| \leq \int_a^b |\phi(t)| dt

Proof:

Let λ(t)=atϕ(t)dtatϕ(t)dt\lambda(t)=\frac{\left|\int_a^t \phi(t) dt\right|}{\int_a^t |\phi(t)| dt}, then λ(t)=1\left|\lambda(t)\right|=1.

abϕ(t)dt=λabϕ(t)dt=abλ(t)ϕ(t)dt=Re{abλ(t)ϕ(t)dt}abλ(t)ϕ(t)dt=abϕ(t)dt\begin{aligned} \left|\int_a^b \phi(t) dt\right|&=\lambda\int_a^b \phi(t) dt\\ &=\int_a^b \lambda(t)\phi(t) dt\\ &=\text{Re} \{\int_a^b \lambda(t)\phi(t) dt\}\\ &\leq\int_a^b |\lambda(t)\phi(t)| dt\\ &=\int_a^b |\phi(t)| dt \end{aligned}

Assume ϕ\phi is continuous on [a,b][a,b], the equality means λ(t)ϕ(t)\lambda(t)\phi(t) is real and positive everywhere on [a,b][a,b], which means argϕ(t)\arg \phi(t) is constant.

QED

Definition 6.4 Arc Length

Let γ\gamma be a curve in the complex plane defined by γ(t)=x(t)+iy(t)\gamma(t)=x(t)+iy(t), t[a,b]t\in[a,b]. The arc length of γ\gamma is given by

Γ=abγ(t)dt=ab(dxdt)2+(dydt)2dt\Gamma=\int_a^b |\gamma'(t)| dt=\int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} dt

N.B. If Γf(z)dz\int_{\Gamma} f(z) dz depends on orientation of Γ\Gamma, but not the parametrization.

We define

Γf(z)dz=Γf(γ(t))γ(t)dt\int_{\Gamma} f(z) dz=\int_{\Gamma} f(\gamma(t))\gamma'(t) dt

Example:

Suppose Γ\Gamma is the circle centered at z0z_0 with radius RR

Γ1zz0dz\int_{\Gamma} \frac{1}{z-z_0} dz

Parameterize the unit circle:

γ(t)=z0+Reitγ(t)=iReit,t[0,2π]\gamma(t)=z_0+Re^{it}\quad \gamma'(t)=iRe^{it}, t\in[0,2\pi] f(z)=1zz0f(z)=\frac{1}{z-z_0} f(γ(t))=1(z0+Reit)z0f(\gamma(t))=\frac{1}{(z_0+Re^{it})-z_0} Γf(z)dz=02πf(γ(t))γ(t)dt=02π1ReitiReitdt=2πi\int_{\Gamma} f(z) dz=\int_0^{2\pi} f(\gamma(t))\gamma'(t) dt=\int_0^{2\pi} \frac{1}{Re^{-it}}iRe^{it} dt=2\pi i

Theorem 6.11 (Uniform Convergence)

If fn(z)f_n(z) converges uniformly to f(z)f(z) on Γ\Gamma, assume length of Γ\Gamma is finite, then

limnΓfn(z)dz=Γf(z)dz\lim_{n\to\infty} \int_{\Gamma} f_n(z) dz = \int_{\Gamma} f(z) dz

Proof:

Let ϵ>0\epsilon>0, since fn(z)f_n(z) converges uniformly to f(z)f(z) on Γ\Gamma, there exists NNN\in\mathbb{N} such that for all nNn\geq N,

fn(z)f(z)<ϵ\left|f_n(z)-f(z)\right|<\epsilon Γfn(z)dzΓf(z)dz=Γ(fn(γ(t))f(γ(t)))γ(t)dtΓfn(γ(t))f(γ(t))γ(t)dtΓϵγ(t)dt=ϵlength(Γ)\begin{aligned} \left|\int_{\Gamma} f_n(z) dz - \int_{\Gamma} f(z) dz\right|&=\left|\int_{\Gamma} (f_n(\gamma(t))-f(\gamma(t)))\gamma'(t) dt\right|\\ &\leq \int_{\Gamma} |f_n(\gamma(t))-f(\gamma(t))||\gamma'(t)| dt\\ &\leq \int_{\Gamma} \epsilon|\gamma'(t)| dt\\ &=\epsilon\text{length}(\Gamma) \end{aligned}

QED

Theorem 6.6 (Integral of derivative)

Suppose Γ\Gamma is a closed curve, γ:[a,b]C\gamma:[a,b]\to\mathbb{C} and γ(a)=γ(b)\gamma(a)=\gamma(b).

Γf(z)dz=abf(γ(t))γ(t)dt=abddtf(γ(t))dt=f(γ(b))f(γ(a))=0\begin{aligned} \int_{\Gamma} f'(z) dz &= \int_a^b f'(\gamma(t))\gamma'(t) dt\\ &=\int_a^b \frac{d}{dt}f(\gamma(t)) dt\\ &=f(\gamma(b))-f(\gamma(a))\\ &=0 \end{aligned}

QED

Example:

Let RR be a rectangle {a,a,ai+b,aib}\{-a,a,ai+b,ai-b\}, Γ\Gamma is the boundary of RR with positive orientation.

Let Rez2dz\int_{R} e^{-z^2}dz.

Is ez2=ddzf(z)e^{-z^2}=\frac{d}{dz}f(z)?

Yes, since

ez2=1z21!+z42!z63!+=ddz(z1!13z32!+15z53!)e^{z^2}=1-\frac{z^2}{1!}+\frac{z^4}{2!}-\frac{z^6}{3!}+\cdots=\frac{d}{dz}\left(\frac{z}{1!}-\frac{1}{3}\frac{z^3}{2!}+\frac{1}{5}\frac{z^5}{3!}-\cdots\right)

This is polynomial, therefore holomorphic.

So

Rez2dz=0\int_{R} e^{z^2}dz = 0

with some limit calculation, we can get

Rez2dz=2πi\int_{R} e^{-z^2}dz = 2\pi i
Last updated on