Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 9)

Math4121 Lecture 9

Exam next week.

Transition to new book.

Continue on Chapter 6

Integrable Functions

Theorem 6.11

Suppose fR(α)f\in \mathscr{R}(\alpha) on [a,b][a, b], mf(x)Mm\leq f(x)\leq M for all x[a,b]x\in [a, b], and ϕ\phi is continuous on [m,M][m, M], and let h(x)=ϕ(f(x))h(x)=\phi(f(x)) on [a,b][a, b]. Then hR(α)h\in \mathscr{R}(\alpha) on [a,b][a, b].

Proof:

Since ϕ\phi is uniformly continuous on [m,M][m, M], for any ϵ>0\epsilon > 0, there exists a δ>0\delta > 0 such that if s,t[m,M]s, t\in [m, M] and st<δ|s-t| < \delta, then ϕ(s)ϕ(t)<ϵ|\phi(s)-\phi(t)| < \epsilon.

Since fR(α)f\in \mathscr{R}(\alpha) on [a,b][a, b], we can find a partition P={x0,x1,,xn}P=\{x_0, x_1, \cdots, x_n\} of [a,b][a, b] such that U(f,P,α)L(f,P,α)<ϵδU(f, P, \alpha)-L(f, P, \alpha) < \epsilon \delta.

Set Mi=sup{f(x):x[xi1,xi]}M_i=\sup \{f(x): x\in [x_{i-1}, x_i]\} and mi=inf{f(x):x[xi1,xi]}m_i=\inf \{f(x): x\in [x_{i-1}, x_i]\}. Mi=sup{h(x):x[xi1,xi]}M_i^*=\sup \{h(x): x\in [x_{i-1}, x_i]\} and mi=inf{h(x):x[xi1,xi]}m_i^*=\inf \{h(x): x\in [x_{i-1}, x_i]\}.

We call a index ii good if Mimi<δM_i-m_i < \delta.

If ii is good, then x,y[xi1,xi]\forall x, y\in [x_{i-1}, x_i], f(x)f(y)<δ|f(x)-f(y)| < \delta and by uniform continuity of ϕ\phi, ϕ(f(x))ϕ(f(y))<ϵ|\phi(f(x))-\phi(f(y))| < \epsilon.

Therefore, Mimi<ϵ|M_i^*-m_i^*| < \epsilon.

If ii is bad, then MimiδM_i-m_i\geq \delta.

Notice that

δibadΔαiibad(Mimi)Δαii=1n(Mimi)ΔαiU(f,P,α)L(f,P,α)<ϵδ\begin{aligned} \delta\sum_{i\in\text{bad}} \Delta \alpha_i &\leq \sum_{i\in\text{bad}} (M_i-m_i) \Delta \alpha_i \\ &\leq \sum_{i=1}^n (M_i-m_i) \Delta \alpha_i \\ &\leq U(f, P, \alpha)-L(f, P, \alpha) \\ &< \epsilon\delta \end{aligned}

Therefore, i=1n(Mimi)Δαi<ϵ\sum_{i=1}^n (M_i^*-m_i^*) \Delta \alpha_i < \epsilon.

So,

U(P,h,α)L(P,h,α)=i=1n(Mimi)ΔαiigoodϵΔαi+ibad2sup{h(x)h(y):x,y[xi1,xi]}Δαiϵ[α(b)α(a)]+2ϵsup{h(x)h(y):x,y[a,b]}\begin{aligned} U(P,h,\alpha)-L(P,h,\alpha) &= \sum_{i=1}^n (M_i^*-m_i^*) \Delta \alpha_i \\ &\leq \sum_{i\in\text{good}} \epsilon \Delta \alpha_i + \sum_{i\in\text{bad}}2 \sup \{|h(x)-h(y)|: x, y\in [x_{i-1}, x_i]\} \Delta \alpha_i \\ &\leq \epsilon [\alpha(b)-\alpha(a)] + 2\epsilon \sup \{|h(x)-h(y)|: x, y\in [a, b]\}\\ \end{aligned}

Since ϵ\epsilon is arbitrary, hR(α)h\in \mathscr{R}(\alpha) on [a,b][a, b].

QED

Properties of Integrable Functions

Theorem 6.12

Let f,gR(α)f,g\in \mathscr{R}(\alpha) on [a,b][a, b].

(a) f+gR(α)f+g\in \mathscr{R}(\alpha) on [a,b][a, b], ab(f+g)dα=abfdα+abgdα\int_a^b (f+g)d\alpha = \int_a^b f d\alpha + \int_a^b g d\alpha. (Linearity of the integral)

(aa) If cRc\in \mathbb{R}, then cfR(α)cf\in \mathscr{R}(\alpha) on [a,b][a, b], and abcfdα=cabfdα\int_a^b cf d\alpha = c\int_a^b f d\alpha.

(b) If f(x)g(x),x[a,b]f(x)\leq g(x),\forall x\in [a, b], then abfdαabgdα\int_a^b f d\alpha \leq \int_a^b g d\alpha.

(c) c[a,b]c\in [a, b], then acfdα+cbfdα=abfdα\int_a^c f d\alpha + \int_c^b f d\alpha = \int_a^b f d\alpha.

(d) If f(x)M|f(x)|\leq M, then abfdαM(α(b)α(a))|\int_a^b f d\alpha| \leq M(\alpha(b)-\alpha(a)).

(e) If fR(β)f\in \mathscr{R}(\beta) then fR(α+β)f\in \mathscr{R}(\alpha+\beta) and abfd(α+β)=abfdα+abfdβ\int_a^b f d(\alpha+\beta) = \int_a^b f d\alpha + \int_a^b f d\beta.

Proof:

Property (aa), (b), (e) holds for Riemann Sums themselves.

For (a), Set h(x)=f(x)+g(x)h(x)=f(x)+g(x). Then hR(α)h\in \mathscr{R}(\alpha) on [a,b][a, b] and we will show abhdαabfdα+abgdα\int_a^b h d\alpha \leq \int_a^b f d\alpha + \int_a^b g d\alpha.

Since f,gR(α)f,g\in \mathscr{R}(\alpha) on [a,b][a, b], for any ϵ>0\epsilon > 0, there exists a partition P1,P2P_1,P_2 of [a,b][a, b] such that U(f,P1,α)L(f,P1,α)<ϵU(f,P_1,\alpha)-L(f,P_1,\alpha) < \epsilon and U(g,P2,α)L(g,P2,α)<ϵU(g,P_2,\alpha)-L(g,P_2,\alpha) < \epsilon.

Let P=P1P2P=P_1\cup P_2. Then U(P,f,α)U(P1,f,α)<abfdα+ϵU(P,f,\alpha)\leq U(P_1,f,\alpha)< \int_a^b f d\alpha + \epsilon and U(P,g,α)U(P2,g,α)<abgdα+ϵU(P,g,\alpha)\leq U(P_2,g,\alpha)< \int_a^b g d\alpha + \epsilon.

So U(P,h,α)U(P,f,α)+U(P,g,α)abfdα+abgdα+2ϵU(P,h,\alpha)\leq U(P,f,\alpha)+U(P,g,\alpha)\leq \int_a^b f d\alpha + \int_a^b g d\alpha + 2\epsilon.

Since ϵ\epsilon is arbitrary, abhdαabfdα+abgdα\int_a^b h d\alpha \leq \int_a^b f d\alpha + \int_a^b g d\alpha.

supcf(x)=csupf(x)cR\sup cf(x) = c\sup f(x)\quad \forall c\in \mathbb{R} U(P,cf,α)=cU(P,f,α)U(P,cf, \alpha) = cU(P,f,\alpha)

For (b), notice that if f(x)g(x)f(x)\leq g(x), then supf(x)supg(x)\sup f(x)\leq \sup g(x), U(P,f,α)U(P,g,α)U(P,f,\alpha)\leq U(P,g,\alpha). and L(P,f,α)L(P,g,α)L(P,f,\alpha)\leq L(P,g,\alpha).

For (c), if fR(α)f\in \mathscr{R}(\alpha) on [a,b][a,b], and if a<c<ba<c<b, then fRf\in \mathscr{R} on [a,c][a,c] and [c,b][c,b], and

acfdα+cbfdα=abfdα\int_a^c f d\alpha + \int_c^b f d\alpha=\int_a^b f d\alpha

For every partition P={x0,x1,,xn}P=\{x_0,x_1,\cdots,x_n\} of [a,b][a,b], we have a refinement P=P{c}P^*=P\cup\{c\} of [a,b][a,b]. Let P1={x0,x1,,xj,c}P_1=\{x_0,x_1,\cdots,x_j,c\} and P2={c,xj+1,,xn}P_2=\{c,x_{j+1},\cdots,x_n\} be the partitions of [a,c][a,c] and [c,b][c,b] respectively. So

U(P,f,α)=i=0nMi(xixi+1)=Mc(cxj)+i=0j1Mi(xixi+1)+i=j+1nMi(xixi+1)=U(P1,f,α)+U(P2,f,α)\begin{aligned} U(P^*,f,\alpha)&=\sum_{i=0}^{n}M_i(x_i-x_{i+1})\\ &=M_c(c-x_j)+\sum_{i=0}^{j-1}M_i(x_i-x_{i+1})+\sum_{i=j+1}^{n}M_i(x_i-x_{i+1})\\ &=U(P_1,f,\alpha)+U(P_2,f,\alpha) \end{aligned}

and

L(P,f,α)=i=0nmi(xixi+1)=mc(xjc)+i=0j1mi(xixi+1)+i=j+1n1mi(xixi+1)=L(P1,f,α)+L(P2,f,α)\begin{aligned} L(P^*,f,\alpha)&=\sum_{i=0}^{n}m_i(x_i-x_{i+1})\\ &=m_c(x_j-c)+\sum_{i=0}^{j-1}m_i(x_i-x_{i+1})+\sum_{i=j+1}^{n-1}m_i(x_i-x_{i+1})\\ &=L(P_1,f,\alpha)+L(P_2,f,\alpha) \end{aligned}

Since PP^* is a refinement of PP, by \textbf{Theorem 6.4}, we have U(P,f,α)U(P,f,α)U(P^*,f,\alpha)\leq U(P,f,\alpha) and L(P,f,α)L(P,f,α)L(P^*,f,\alpha)\geq L(P,f,\alpha).

So acfdα+cbfdαU(P,f,α)U(P,f,α)=abfdα\int_a^c f d\alpha+\int_c^b f d\alpha\leq U(P^*,f,\alpha)\leq U(P,f,\alpha)=\int_a^b f d\alpha.

Similarly, we have acfdα+cbfdαL(P,f,α)L(P,f,α)=abfdα\int_a^c f d\alpha+\int_c^b f d\alpha\geq L(P^*,f,\alpha)\geq L(P,f,\alpha)=\int_a^b f d\alpha.

Therefore, acfdα+cbfdα=abfdα\int_a^c f d\alpha+\int_c^b f d\alpha=\int_a^b f d\alpha.

For (d), if fR(α)f\in \mathscr{R}(\alpha) on [a,b][a,b], and if f(x)M|f(x)| \leq M on [a,b][a,b], then

abfdαM(α(b)α(a))\left|\int_a^b f d\alpha\right| \leq M(\alpha(b)-\alpha(a))

Since f(x)M|f(x)|\leq M on [a,b][a,b], x[a,b]\forall x\in [a,b], we have f(x)[M,M]f(x)\in [-M,M] on [a,b][a,b]. So supf(x)M\sup|f(x)|\leq M and inff(x)M\inf|f(x)|\leq M. Since L(P,f,α)abfdαU(P,f,α)L(P,f,\alpha)\leq \int_a^b f d\alpha\leq U(P,f,\alpha), we have

So

abfdαmax{L(P,f,α),U(P,f,α)}=max{i=0n1MiΔxi,i=0n1miΔxi}i=0n1max{Mi,mi}Δxii=0n1MΔxi=M(α(b)α(a))\begin{aligned} \left|\int_a^b f d\alpha\right|&\leq \max\left\{|L(P,f,\alpha)|,|U(P,f,\alpha)|\right\}\\ &=\max\left\{\sum_{i=0}^{n-1}|M_i|\Delta x_i,\sum_{i=0}^{n-1}|m_i|\Delta x_i\right\}\\ &\leq \sum_{i=0}^{n-1}\max\{|M_i|,|m_i|\}\Delta x_i\\ &\leq \sum_{i=0}^{n-1}M\Delta x_i\\ &=M(\alpha(b)-\alpha(a)) \end{aligned}

Therefore, abfdαM(α(b)α(a))\left|\int_a^b f d\alpha\right| \leq M(\alpha(b)-\alpha(a)).

For (e), notice that

Δ(α+β)i=α(xi)α(xi1)+β(xi)β(xi1)=Δαi+Δβi\begin{aligned} \Delta (\alpha+\beta)_i &= \alpha(x_i)-\alpha(x_{i-1})+\beta(x_i)-\beta(x_{i-1}) \\ &= \Delta \alpha_i + \Delta \beta_i \end{aligned}

QED

Last updated on