Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 8)

Math4121 Lecture 8

Continue on Riemann-Stieltjes Integral

Integrable Functions

Theorem 6.9

If ff is monotonic (increasing) on [a,b][a, b] and α\alpha is continuous on [a,b][a, b], then fR(α)f\in \mathscr{R}(\alpha) on [a,b][a, b].

Proof:

Given a partition P={a=x0,x1,,xn=b}P = \{a = x_0, x_1, \cdots, x_n = b\}, we have

Mi=supx[xii,xi]f(x)f(xi)M_i = \sup_{x\in [x_{i-i}, x_i]} f(x)\leq f(x_{i}) mi=infx[xi1,xi]f(x)f(xi1)m_i = \inf_{x\in [x_{i-1}, x_i]} f(x)\geq f(x_{i-1})

So,

U(P,f,α)L(P,f,α)=i=1n(Mimi)Δαii=1n[f(xi)f(xi1)][α(xi)α(xi1)]i=1n[f(xi)f(xi1)](supx[xi1,xi]α(x)infx[xi1,xi]α(x))=U(P,α,f)L(P,α,f)\begin{aligned} U(P,f,\alpha) - L(P,f,\alpha) &= \sum_{i=1}^{n} (M_i - m_i)\Delta \alpha_i \\ &\leq \sum_{i=1}^{n} \left[ f(x_i) - f(x_{i-1}) \right] \left[ \alpha(x_i) - \alpha(x_{i-1}) \right] \\ &\leq \sum_{i=1}^{n} \left[ f(x_i) - f(x_{i-1}) \right](\sup_{x\in [x_{i-1}, x_i]} \alpha(x) - \inf_{x\in [x_{i-1}, x_i]} \alpha(x)) \\ &=U(P,\alpha,f) - L(P,\alpha,f) \end{aligned}

By Theorem 6.8, αR(f)\alpha\in \mathscr{R}(f), so for any ϵ>0\epsilon > 0, there exists a partition PP such that

U(P,α,f)L(P,α,f)<ϵU(P,\alpha,f) - L(P,\alpha,f) < \epsilon

Therefore, U(P,f,α)L(P,f,α)<U(P,α,f)L(P,α,f)<ϵU(P,f,\alpha) - L(P,f,\alpha)<U(P,\alpha,f) - L(P,\alpha,f) < \epsilon, so fR(α)f\in \mathscr{R}(\alpha) on [a,b][a, b].

QED

Theorem 6.10

Suppose ff is bounded on [a,b][a, b] and has finitely many points {y1,y2,,yJ}\{y_1, y_2, \cdots, y_J\} of discontinuity, and α\alpha is continuous on [a,b][a, b]. Then fR(α)f\in \mathscr{R}(\alpha) on [a,b][a, b].

Proof:

Since ff is bounded, there exists a M>0M>0 such that f(x)M|f(x)|\leq M for all x[a,b]x\in [a, b].

Let ϵ>0\epsilon > 0. Since α\alpha is continuous on [a,b][a, b], we can find some intervals [uj,vj](a,b)[u_j,v_j]\subset (a,b) and yj[uj,vj]y_j\in [u_j,v_j] and α(uj)α(vj)<ϵ|\alpha(u_j) - \alpha(v_j)| < \epsilon for all j=1,2,,Jj=1,2,\cdots,J.

Set K=[a,b]j=1J(uj,vj)K=[a,b]\setminus \bigcup_{j=1}^{J}(u_j,v_j). Since KK is compact, ff is uniformly continuous on KK. Hence, there exists a δ>0\delta > 0 such that for any s,tKs,t\in K and st<δ|s-t|<\delta, we have f(s)f(t)<ϵ|f(s)-f(t)|<\epsilon.

Let P={x0,x1,,xn=b}P=\{x_0,x_1,\cdots,x_n=b\} containing all the points uj,vj,j=1,2,,Ju_j,v_j,\forall j=1,2,\cdots,J and Δxi<δ,xi{uj,vj,j=1,2,,J}\Delta x_i<\delta,\forall x_i\notin \{u_j,v_j,\forall j=1,2,\cdots,J\}.

Then,

If xi=ujx_i=u_j for some j=1,2,,Jj=1,2,\cdots,J, then MimiM:=2supfxM_i-m_i\leq M:=2\sup|f_x|. But Δαiϵ\Delta \alpha_i\leq \epsilon for all i=1,2,,ni=1,2,\cdots,n.

If xiujx_i\neq u_j for all j=1,2,,Jj=1,2,\cdots,J, then by uniform continuity of ff on KK, we have MimiϵM_i-m_i\leq \epsilon.

In either case, we have

U(P,f,α)L(P,f,α)=i=1n(Mimi)ΔαiJMϵ+i=1nϵΔαi=ϵ(JM+i=1nΔαi)\begin{aligned} U(P,f,\alpha) - L(P,f,\alpha) &= \sum_{i=1}^{n} (M_i - m_i)\Delta \alpha_i \\ &\leq J M\epsilon + \sum_{i=1}^{n} \epsilon \Delta \alpha_i \\ &= \epsilon(J M + \sum_{i=1}^{n} \Delta \alpha_i) \end{aligned}

Since ϵ\epsilon is arbitrary, we have U(P,f,α)L(P,f,α)<ϵU(P,f,\alpha) - L(P,f,\alpha) < \epsilon.

Therefore, fR(α)f\in \mathscr{R}(\alpha) on [a,b][a, b].

QED

Theorem 6.11

Suppose fR(α)f\in \mathscr{R}(\alpha) on [a,b][a, b], mf(x)Mm\leq f(x)\leq M for all x[a,b]x\in [a, b], and ϕ\phi is continuous on [m,M][m, M], and let h(x)=ϕ(f(x))h(x)=\phi(f(x)) on [a,b][a, b]. Then hR(α)h\in \mathscr{R}(\alpha) on [a,b][a, b].

Last updated on