Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 5)

Math4121 Lecture 5

Continue on differentiation

L’Hôpital’s Rule

Suppose ff and gg are real differentiable on (a,b)(a,b) and g(x)0g'(x)\neq 0 for all x(a,b)x\in (a,b).

Suppose f(x)g(x)A\frac{f'(x)}{g'(x)}\to A as xax\to a,

If f(x)0f(x)\to 0 and g(x)0g(x)\to 0 as xax\to a,

or g(x)g(x)\to \infty as xax\to a,

then f(x)g(x)A\frac{f(x)}{g(x)}\to A as xax\to a.

Proof:

Main step: Let <a<b<-\infty<a<b<\infty.for any q>Aq>A, there exists c(a,b)c\in (a,b) such that f(x)g(x)<q\frac{f(x)}{g(x)}<q for all x(a,c)x\in (a,c).

Topological definition of limit:

h(x)Ah(x)\to A as xax\to a if ϵ>0\forall \epsilon>0, δ>0\exists \delta>0 such that xa<δ|x-a|<\delta implies h(x)A<ϵ|h(x)-A|<\epsilon.

In other words, if for any open neighborhood VV of AA, there exists an open neighborhood UU of aa such that h(U)Vh(U)\subseteq V.

Case 1: A=A=-\infty, for any q>Aq>A, there exists δ>0\delta>0 such that x(a,a+δ)x\in (a,a+\delta) implies f(x)g(x)<q\frac{f(x)}{g(x)}<q.

Case 2: A=A=\infty, we change the function F(x)=f(x)F(x)=-f(x) and apply the case 1.

Case 3: ARA\in \mathbb{R}, Let ϵ>0\epsilon>0 and take q=A+ϵq=A+\epsilon. c1(a,b)\exists c_1\in (a,b) such that x(a,c1)\forall x\in (a,c_1), f(x)g(x)<q\frac{f(x)}{g(x)}<q.

Set F(x)=f(x)F(x)=-f(x). and q=A+ϵ>Aq=-A+\epsilon>-A. Apply main step, c2(a,b)\exists c_2\in (a,b) such that x(a,c2)\forall x\in (a,c_2), F(x)g(x)<A+ϵ\frac{F(x)}{g(x)}<-A+\epsilon. so x(a,c2)\forall x\in (a,c_2), f(x)g(x)>Aϵ\frac{f(x)}{g(x)}>A-\epsilon.

We take c=min(c1,c2)c=\min(c_1,c_2). Then x(a,c)\forall x\in (a,c), f(x)g(x)<q\frac{f(x)}{g(x)}<q.

QED

Higher Order Derivatives

Definition 5.14

If ff is differentiable on (a,b)(a,b), then we define f(x)=limtxf(t)f(x)txf'(x)=\lim_{t\to x}\frac{f(t)-f(x)}{t-x}.

If ff' is differentiable on (a,b)(a,b), then we define f(x)=(f)(x)f''(x)=(f')'(x).

If f(k)f^{(k)} is differentiable on (a,b)(a,b), then we define f(k+1)(x)=(f(k))(x)f^{(k+1)}(x)=(f^{(k)})'(x).

Theorem 5.15 Taylor’s Theorem

Let f:[a,b]Rf:[a,b]\to \mathbb{R}, and nn be a positive integer.

Let f(n1)f^{(n-1)} be continuous on [a,b][a,b], and differentiable on (a,b)(a,b).

For α[a,b]\alpha\in [a,b], define the Taylor polynomial of order n1n-1 at α\alpha by

P(t)=k=0n1f(k)(α)k!(tα)kP(t)=\sum_{k=0}^{n-1}\frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^k

Example:

When n=1n=1, P(t)=f(α)P(t)=f(\alpha).

When n=2n=2, P(t)=f(α)+f(α)(tα)P(t)=f(\alpha)+f'(\alpha)(t-\alpha).

When n=3n=3, P(t)=f(α)+f(α)(tα)+f(α)2(tα)2P(t)=f(\alpha)+f'(\alpha)(t-\alpha)+\frac{f''(\alpha)}{2}(t-\alpha)^2.

Key property:

P(k)(α)=f(k)(α)k=0,1,,n1P^{(k)}(\alpha)=f^{(k)}(\alpha)\quad \forall k=0,1,\cdots,n-1

For each β[a,b]\beta\in [a,b], there exists xx between α\alpha and β\beta such that

f(β)=P(β)+f(n)(x)n!(αβ)nf(\beta)=P(\beta)+\frac{f^{(n)}(x)}{n!}(\alpha-\beta)^n

On rudin, it is

f(β)=P(β)+f(n)(x)n!(βα)nf(\beta)=P(\beta)+\frac{f^{(n)}(x)}{n!}(\beta-\alpha)^n

Proof:

Let M=f(β)P(β)(βα)nM=\frac{f(\beta)-P(\beta)}{(\beta-\alpha)^n}.

So that f(β)=P(β)+M(βα)nf(\beta)=P(\beta)+M(\beta-\alpha)^n.

Need to show that n!M=f(n)(x)n!M=f^{(n)}(x). for some x(α,β)x\in (\alpha,\beta). Defined g(t)=f(t)P(t)M(tα)ng(t)=f(t)-P(t)-M(t-\alpha)^n.

By our choice of MM, g(α)=g(β)=0g(\alpha)=g(\beta)=0.

g(t)=f(t)P(t)M(n(n1)(n2)(nk+1)(tα)nk)g(t)=f(t)-P(t)-M(n(n-1)(n-2)\cdots(n-k+1)(t-\alpha)^{n-k})

for k=1,2,,n1k=1,2,\cdots,n-1. And when k=nk=n, g(n)(t)=f(n)(t)0M(n!)g^{(n)}(t)=f^{(n)}(t)-0-M(n!).

Need to show that x(α,β)\exists x\in (\alpha,\beta) such that g(n)(x)=0g^{(n)}(x)=0.

By Mean Value Theorem, x1(α,β)\exists x_1\in (\alpha,\beta) such that g(x1)=0g'(x_1)=0.

By Mean Value Theorem, x2(α,x1)\exists x_2\in (\alpha,x_1) such that g(x2)=0g''(x_2)=0.

By Mean Value Theorem, x3(α,x2)\exists x_3\in (\alpha,x_2) such that g(3)(x3)=0g^{(3)}(x_3)=0.

\cdots

By Mean Value Theorem, xn(α,xn1)\exists x_n\in (\alpha,x_{n-1}) such that g(n)(xn)=0g^{(n)}(x_n)=0.

Since g(n)(α)=0g^{(n)}(\alpha)=0 for k=0,1,2,,n1k=0,1,2,\cdots,n-1, we can find xn(α,xn1)x_n\in (\alpha,x_{n-1}) such that g(n)(xn)=0g^{(n)}(x_n)=0.

QED

Chapter 6: Riemann-Stieltjes Integral

Last updated on