Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 39)

Math4121 Lecture 39

Fundamental theorem of calculus (In Lebesgue integration)

Preliminary results

Lemma 1

Riemann integrable functions are Lebesgue integrable abf(x)dx=[a,b]fdm\int_a^b f(x)dx = \int_{[a,b]} f dm

Lemma 2

Density of continuous functions: Given ff integrable, then ϵ>0\exists \epsilon > 0 there is gg continuous such that [a,b]fgdm<ϵ\int_{[a,b]} |f-g| dm < \epsilon

Lemma 3

Maximal function: f(x)=supI is open intervalsAIf(x)f^*(x) = \sup_{I\text{ is open intervals}}A_I f(x), where AI=χIm(I)IfdmA_I = \frac{\chi_I}{m(I)} \int_I f dm. Then {xR:f(x)>λ}<2λRfdm|\{x\in\mathbb{R}:f^*(x)>\lambda\}|<\frac{2}{\lambda}\int_{\mathbb{R}}|f|dm

Lemma 4

I=[a,b]I=[a,b], Iδ=[a+δ,bδ]I_\delta = [a+\delta, b-\delta], δ>0\delta>0, limδ0+AIδf(x)=AIf(x)\lim_{\delta\to 0^+} A_{I_\delta} f(x) = A_I f(x). (Prove via dominated convergence theorem)

Riemann’s Fundamental theorem of calculus:

If gg is continuous on [a,b][a,b], then G(x)=axg(t)dtG(x) = \int_a^x g(t)dt is differentiable on (a,b)(a,b) and G(x)=g(x)G'(x) = g(x) for all x(a,b)x\in(a,b).

Lebesgue’s Fundamental theorem of calculus

If ff is Lebesgue integrable on [a,b][a,b], then F(x)=axf(t)dtF(x) = \int_a^x f(t)dt is differentiable almost everywhere and F(x)=f(x)F'(x) = f(x) almost everywhere.

Outline:

Let λ,ϵ>0\lambda,\epsilon > 0. Find gg continuous such that Rfgdm<λϵ5\int_{\mathbb{R}}|f-g|dm < \frac{\lambda \epsilon}{5}.

To control AIf(x)f(x)=(AI(fg)(x))+(AIg(x)g(x))+(g(x)f(x))A_I f(x)-f(x)=(A_I(f-g)(x))+(A_I g(x)-g(x))+(g(x)-f(x)), we need to estimate the three terms separately.

Our goal is to show that limr0+supI is open interval,m(I)<r,xIAIf(x)f(x)=0\lim_{r\to 0^+}\sup_{I\text{ is open interval}, m(I)<r, x\in I}|A_I f(x)-f(x)|=0. For xx almost every x[a,b]x\in[a,b].

This implies the fundamental theorem of calculus.

Since F(x+h)F(x)h=1m(Ih)Ihfdm\frac{F(x+h)-F(x)}{h}=\frac{1}{m(I_h)}\int_{I_h}f dm, if the above condition holds, then η>0\forall \eta>0, we can find r>0r>0 such that supI is open interval,m(I)<r,xIAIf(x)f(x)<η2\sup_{I\text{ is open interval}, m(I)<r, x\in I}|A_I f(x)-f(x)|<\frac{\eta}{2}.

Now given h<min{r,xa}h<\min\{r, x-a\}, we can find by 4  an interval IhI_h^* such that

1hIhfdm1m(Ih)Ihfdm<η2\left|\frac{1}{h}\int_{I_h^*}f dm - \frac{1}{m(I_h^*)}\int_{I_h^*}f dm\right|<\frac{\eta}{2}

Proof:

Let

F={x[a,b]:lim supr0+supI is open interval,m(I)<r,xIAIf(x)f(x)>λ}F=\left\{x\in [a,b]:\limsup_{r\to 0^+}\sup_{I\text{ is open interval}, m(I)<r, x\in I}|A_I f(x)-f(x)|>\lambda \right\}

Need to show m(F)<ϵm(F)<\epsilon.

Since F{(fg)>λ2}{(fg)>λ2}F\subseteq \{(f-g)^*>\frac{\lambda}{2}\}\cup \{(f-g)>\frac{\lambda}{2}\}

lim supr0+supI is open interval,m(I)<r,xIAIf(x)f(x)lim supr0+supI is open interval,m(I)<r,xIAI(fg)(x)+g(x)f(x)(fg)(x)+(fg)(x)\limsup_{r\to 0^+}\sup_{I\text{ is open interval}, m(I)<r, x\in I}|A_I f(x)-f(x)|\leq \limsup_{r\to 0^+}\sup_{I\text{ is open interval}, m(I)<r, x\in I}|A_I (f-g)(x)|+|g(x)-f(x)| \leq |(f-g)^*(x)|+|(f-g)(x)|

By maximal inequality and Markov’s inequality,

m(F)4λRfgdm+1λRfgdm=5λλϵ5=ϵ\begin{aligned} m(F)&\leq \frac{4}{\lambda}\int_{\mathbb{R}}|f-g|dm+\frac{1}{\lambda}\int_{\mathbb{R}}|f-g|dm\\ &=\frac{5}{\lambda}\frac{\lambda \epsilon}{5}\\ &=\epsilon \end{aligned}

QED

Last updated on