Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 38)

Math4121 Lecture 38

Extended fundamental theorem of calculus with Lebesgue integration

Hardy-Littlewood maximal function

Given integrable ffm and an interval II, look at the averaging operator AIf(x)=χI(x)m(I)If(y)dyA_I f(x)=\frac{\chi_I(x)}{m(I)}\int_I f(y)dy.

The maximal function is defined as

f(x)=supI is an open intervalAIf(x)f^*(x)=\sup_{I \text{ is an open interval}} A_I f(x)

Theorem Hardy-Littlewood Maximal Function Theorem

Fix ff integrable. For each λ>0\lambda>0, we define

Eλ={xR:f(x)>λ}E_\lambda^*=\{x\in\mathbb{R}: |f^*(x)|>\lambda\}

Then

m(Eλ)2λRfdmm(E_\lambda^*)\leq \frac{2}{\lambda}\int_\mathbb{R} |f| dm

To give context for the maximal estimate, for any ff integrable, λ>0\lambda>0,

Eλ={xR:f(x)>λ}E_\lambda=\{x\in\mathbb{R}: |f(x)|>\lambda\}

Then we have Marknov’s inequality, m(Eλ)1λRfdmm(E_\lambda)\leq \frac{1}{\lambda}\int_\mathbb{R} |f| dm. We know f(x)>λχEλ(x)|f(x)|>\lambda \chi_{E_\lambda}(x) so Markov’s inequality follows by integrating.

Proof:

Let f(x)=supI is an open interval such that xI1m(I)Ifdmf^*(x)=\sup_{I \text{ is an open interval such that } x\in I} \frac{1}{m(I)}\int_I f \, dm.

If xEλx\in E_\lambda^*, then I\exists I open interval such that xIx\in I and 1m(I(x))I(x)fdm>λ\frac{1}{m(I(x))}\left|\int_{I(x)} f \, dm\right|>\lambda.

Take KEλK\subset E_\lambda^* compact. Then KxKI(x)K\subset \bigcup_{x\in K} I(x). Taking the finite subcover, we have I1,,InI_1, \ldots, I_n open intervals such that Ki=1nIiK\subset \bigcup_{i=1}^n I_i.

If three intervals, I,J,KI,J,K have non-empty intersection, then one is contained in the union of the other two.

In particular, we can find another subcover for KK, J1,,JNJ_1, \ldots, J_N such that they have overlap of at most 2 (otherwise, we can remove the cover). We can state this as

j=1NχJj(x)2\sum_{j=1}^N \chi_{J_j}(x)\leq 2 m(K)j=1Nm(Jj)j=1N1λJjfdm1λRj=1NχJj(x)f(x)dx2λRf(x)dx\begin{aligned} m(K)&\leq \sum_{j=1}^N m(J_j)\\ &\leq \sum_{j=1}^N \frac{1}{\lambda}\left|\int_{J_j} f \, dm\right|\\ &\leq \frac{1}{\lambda}\int_\mathbb{R} \sum_{j=1}^N \chi_{J_j}(x) |f(x)| \, dx\\ &\leq \frac{2}{\lambda}\int_\mathbb{R} |f(x)| \, dx \end{aligned}

Since AIf(x)A_I f(x) is measurable, ff^* is measurable function and EλE_\lambda is measurable, we have

m(Eλ)2λRf(x)dxm(E_\lambda^*)\leq \frac{2}{\lambda}\int_\mathbb{R} |f(x)| \, dx

QED

3 Big Convergence Theorems

Theorem L.1 (Monotone Convergence Theorem)

Monotone convergence theorem 

Theorem L.2 (Fatou’s Lemma)

Let {fn}n=1\{f_n\}_{n=1}^\infty be a sequence of non-negative measurable functions on EE. Then

Elim infnfndmlim infnEfndm\int_E \liminf_{n\to\infty} f_n \, dm\leq \liminf_{n\to\infty} \int_E f_n \, dm

Proof:

Let gn=infknfkg_n=\inf_{k\geq n} f_k is a monotone increasing nonnegative, and the following properties holds:

limngn(x)=supn1infknfk(x)=lim infnfn(x)\lim_{n\to\infty} g_n(x)=\sup_{n\geq 1} \inf_{k\geq n} f_k(x)=\liminf_{n\to\infty} f_n(x) EgndminfknEfkdm\int_E g_n \, dm\leq \inf_{k\geq n} \int_E f_k\, dm

So,

EgndminfknEfkdm \int_E g_n \, dm\leq \inf_{k\geq n} \int_E f_k \, dm

Apply the monotone convergence theorem to gng_n, we have

limnEgndmlim infnEfndm\lim_{n\to\infty} \int_E g_n \, dm\leq \liminf_{n\to\infty} \int_E f_n \, dm

QED

Theorem L.3 (Dominated Convergence Theorem)

Let {fn}n=1\{f_n\}_{n=1}^\infty be a sequence of measurable functions on R\mathbb{R} converging to ff almost everywhere. If there exists integrable gg such that fng|f_n|\leq |g| for all nn, then

Efdm=limnEfndm\int_E f \, dm=\lim_{n\to\infty} \int_E f_n \, dm

Proof:

Consider the function g+fng+f_n and gfng-f_n, these are non-negative sequences of measurable functions. By Fatou’s lemma, we have

gdm+fdm=Elim infn(g+fn)dmlim infnE(g+fn)dm=Egdm+lim infnEfndm\int g\,dm+\int f\,dm=\int_E \liminf_{n\to\infty} (g+f_n) \, dm\leq \liminf_{n\to\infty} \int_E (g+f_n) \, dm=\int_E g\,dm+\liminf_{n\to\infty} \int_E f_n\,dm

So, Efdmlim infnEfndm\int_E f\,dm\leq \liminf_{n\to\infty} \int_E f_n\,dm.

Similarly, we have

gdmfdm=Elim infn(gfn)dmlim infnE(gfn)dm=Egdmlim supnEfndm\int g\,dm-\int f\,dm=\int_E \liminf_{n\to\infty} (g-f_n) \, dm\leq \liminf_{n\to\infty} \int_E (g-f_n) \, dm=\int_E g\,dm-\limsup_{n\to\infty} \int_E f_n\,dm

So, lim supnEfndmEfdm\limsup_{n\to\infty} \int_E f_n\,dm\leq \int_E f\,dm.

So lim supnEfndmEfdmlim infnEfndm\limsup_{n\to\infty} \int_E f_n\,dm\leq \int_E f\,dm\leq \liminf_{n\to\infty} \int_E f_n\,dm.

Since lim supnEfndmlim infnEfndm\limsup_{n\to\infty} \int_E f_n\,dm\geq \liminf_{n\to\infty} \int_E f_n\,dm, we have Efdm=limnEfndm\int_E f\,dm=\lim_{n\to\infty} \int_E f_n\,dm.

QED

Last updated on