Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 37)

Math4121 Lecture 37

Extended fundamental theorem of calculus with Lebesgue integration

Density of continuous functions

Lemma for density of continuous functions

Let KUK\subseteq U be bounded sets in R\mathbb{R}, KK is closed and UU is open. Then there is a continuous function gg such that χKgχU\chi_K\leq g\leq \chi_U.

Proof in homework.

Hint: Consider the basic intervals cases.

Theorem for continuous functions

Let ff be integrable. For each ϵ>0\epsilon>0, there is a continuous function g:RRg:\mathbb{R}\to\mathbb{R} such that Rfgdm<ϵ\int_{\mathbb{R}}|f-g|dm<\epsilon.

Proof:

First where f=χSf=\chi_S for some bounded means set SS. then extended to all ff integrable.

First, assume f=χSf=\chi_S. Let ϵ>c\epsilon>c, we can find KSUK\subseteq S\subseteq U. and KK is closed and UU is open such that (by definition of Lebesgue outer measure)

m(K)+ϵ2>m(S)>m(U)ϵ2m(K)+\frac{\epsilon}{2}>m(S)>m(U)-\frac{\epsilon}{2}

In particular, m(UK)=m(U)m(K)<ϵm(U\setminus K)=m(U)-m(K)<\epsilon.

By lemma, there is a continuous function gg such that χKgχU\chi_K\leq g\leq \chi_U.

So

EχSgdm=UKχSgdmm(UK)<ϵ\int_E |\chi_S -g|dm=\int_{U\setminus K} |\chi_S -g|dm\leq m(U\setminus K)<\epsilon

For the general case,

By the Monotone Convergence Theorem (use fχ[N,N]|f|\chi_{[-N,N]} to approximate f|f|), we can find NN large such that

ENcfdm<ϵ3\int_{E_N^c}|f|dm<\frac{\epsilon}{3}

where EN=E[N,N]E_N=E\cap [-N,N].

Notice that by the definition of Lebesgue integral, f+dm=sup{ϕ+dm:ϕ is simple and ϕf+}\int f^+ dm=\sup\{\int \phi^+ dm:\phi\text{ is simple and } \phi\leq f^+\} and fdm=sup{ϕdm:ϕ is simple and ϕf}\int f^- dm=\sup\{\int \phi^- dm:\phi\text{ is simple and } \phi\leq f^-\}.

By considering f+f^+ and ff^- separately, we can find a simple function ϕ\phi such that

ENfϕdm<ϵ3\int_{E_N} |f-\phi|dm<\frac{\epsilon}{3}

For each i=1,2,,ni=1,2,\cdots,n, we can find gig_i continuous such that

EχSigidm<ϵ3M\int_{E}|\chi_{S_i}-g_i|dm<\frac{\epsilon}{3M}

where M=i=1nαiM=\sum_{i=1}^n |\alpha_i|.

Take g=i=1nαigig=\sum_{i=1}^n \alpha_i g_i,

Eϕgdmi=1nαiEgiχSidm<ϵ3\int_E |\phi-g|dm\leq \sum_{i=1}^n |\alpha_i|\int_E |g_i-\chi_{S_i}|dm<\frac{\epsilon}{3}

ϕg=i=1nαi(χSigi)\phi-g=\sum_{i=1}^n \alpha_i (\chi_{S_i-g_i})

All in all,

EfgdmEfϕdm+Eϕgdm=ENcfdm+Efϕdm+Eϕgdm<ϵ3+ϵ3+ϵ3=ϵ\begin{aligned} \int_E |f-g|dm&\leq \int_E|f-\phi|dm+\int_E |\phi-g|dm\\ &=\int_{E_N^c}|f|dm+\int_E |f-\phi|dm+\int_E |\phi-g|dm\\ &<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}\\ &=\epsilon \end{aligned}

QED

Road map for proving the fundamental theorem of calculus in Lebesgue integration

Recall the Riemann-Stieltjes integral:

If gR(α)g\in \mathscr{R}(\alpha) on [a,b][a,b],

G(x)=axgdαG(x)=\int_a^x g d\alpha,

then:

  1. GG is continuous on [a,b][a,b]
  2. If gg is continuous at x[a,b]x\in [a,b], then GG is differentiable at xx with G(x)=g(x)G'(x)=g(x).

To extend this to the case where gg is Lebesgue integrable, we use the Hardy-Littlewood maximal function.

Definition of the Hardy-Littlewood maximal function

Given an interval IRI\subseteq \mathbb{R}, define the averaging operator AIf(x)=χI(x)m(I)If(x)dmA_I f(x)=\frac{\chi_I(x)}{m(I)}\int_I f(x)dm.

(This function takes the average of ff over the interval II.)

The Hardy-Littlewood maximal function is defined as:

f(x)=supI is open intervalAIf(x)f^*(x)=\sup_{I\text{ is open interval}}A_I f(x)

We will show that ff^* is not that such worse than ff. (Prove on Wednesday)

Relates to the Fundamental Theorem of Calculus in Lebesgue integration.

G(x+h)G(x)h=1hxx+hg(t)dt=A[x,x+h]g(x)\frac{G(x+h)-G(x)}{h}=\frac{1}{h}\int_x^{x+h} g(t)dt=A_{[x,x+h]}g(x)

If we can control all the averages, we can control the function.

Last updated on