Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 34)

Math4121 Lecture 34

Important:

M={SR:S satisfies the caratheodory condition}\mathfrak{M}=\{S\subset \mathbb{R}: S \text{ satisfies the caratheodory condition}\}, that is, for any XX of finite outer measure,

me(X)=me(XS)+me(XSc)m_e(X)=m_e(X\cap S)+m_e(X\cap S^c)

In particular, the measure of sets can be infinite, not necessarily bounded. (We want to make the real line measurable.)

Lebesgue Integral

Simple Function

A function ϕ\phi is called a simple function if

ϕ(x)=i=1naiχSi(x)\phi(x)=\sum_{i=1}^{n} a_i \chi_{S_i}(x)

where aiRa_i\in \mathbb{R} and χSi={1,xSi0,xSi\chi_{S_i}=\begin{cases}1, & x\in S_i \\ 0, & x\notin S_i\end{cases}

where {Si}i=1n\{S_i\}_{i=1}^{n} are pairwise disjoint each having finite measure.

constant function is not simple (R\mathbb{R} is not finite measurable sets.)

Theorem 6.6

A function ff is measurable on [a,b][a,b] if and only if there exists a sequence of simple functions {ϕn}\{\phi_n\} such that limnϕn(x)=f(x)\lim_{n\to\infty} \phi_n(x)=f(x) almost everywhere on [a,b][a,b].

Proof:

Partition [n,n][-n,n] into n2n+1n2^{n+1} pieces.

(These are just horizontal strips from n-n to nn with width 12n\frac{1}{2^n}.)

En,k={x[n,n]:k2nf(x)<k+12n}E_{n,k}=\{x\in[-n,n]:\frac{k}{2^n}\leq f(x)<\frac{k+1}{2^n}\}

for n2n<k<n2n-n2^n<k<n2^n

En,n2n={x[n,n]:f(x)n}E_{n,n2^n}=\{x\in[-n,n]:f(x)\geq n\} En,n2n={x[n,n]:f(x)<n2n+12n}E_{n,-n2^n}=\{x\in[-n,n]:f(x)<\frac{-n2^n+1}{2^n}\} ϕn(x)=k2nχEn,k(x)\phi_n(x)=\frac{k}{2^n}\chi_{E_{n,k}}(x)

is a simple function.

We need to justify that ϕn(x)f(x)\phi_n(x)\to f(x) for all xRx\in\mathbb{R}.

Let xRx\in\mathbb{R}. And choose n0n_0 large such that x[n0,n0]x\in [-n_0,n_0] and f(x)[n0,n0]f(x)\in [-n_0,n_0].

Then, for nn0n\geq n_0,

ϕn(x)f(x)<12n0|\phi_n(x)-f(x)|<\frac{1}{2^n}\to 0

as nn\to\infty.

QED

Integration

Given a measurable set EE and a simple function ϕ\phi, we define

Eϕdm=i=1naim(ESi)\int_E \phi dm=\sum_{i=1}^{n} a_i m(E\cap S_i)

Properties 6.10

Let ϕ\phi and ψ\psi be simple functions, cRc\in \mathbb{R}, and E=E1E2E=E_1\cup E_2 where E1E2=E_1\cap E_2=\emptyset and E1,E2ME_1,E_2\in \mathfrak{M}. Then,

  1. Ecϕdm=cEϕdm\int_E c\phi dm=c\int_E \phi dm (linearity)
  2. E(ϕ+ψ)dm=Eϕdm+Eψdm\int_E (\phi+\psi)dm=\int_E \phi dm+\int_E \psi dm (additivity of simple functions)
  3. if ϕ(x)ψ(x)\phi(x)\leq \psi(x) for all xEx\in E, then EϕdmEψdm\int_E \phi dm\leq \int_E \psi dm (monotonicity)
  4. Eϕ(x)dm=E1ϕ(x)dm+E2ϕ(x)dm\int_E \phi(x)dm=\int_{E_1} \phi(x)dm+\int_{E_2} \phi(x)dm (additivity over disjoint measurable sets)

Proof:

Let ϕ(x)=i=1naiχSi(x)\phi(x)=\sum_{i=1}^{n} a_i \chi_{S_i}(x) and ψ(x)=j=1mbjχTj(x)\psi(x)=\sum_{j=1}^{m} b_j \chi_{T_j}(x).

ϕ+ψ=i=1naiχSi+j=1mbjχTj\phi+\psi=\sum_{i=1}^{n} a_i \chi_{S_i}+\sum_{j=1}^{m} b_j \chi_{T_j}

Without loss of generality, we may assume that xEx\in E, i=1nSi=j=1mTj=E\bigcup_{i=1}^{n} S_i=\bigcup_{j=1}^{m} T_j=E.

So

ϕ+ψ=i,j=1n,m(ai+bj)χSiTj\phi+\psi=\sum_{i,j=1}^{n,m}(a_i+b_j) \chi_{S_i\cup T_j}

is a simple function.

E(ϕ+ψ)dm=i,j=1n,m(ai+bj)m(ESiTj)=i=1naij=1mm(ESiTj)+j=1mbji=1nm(ESiTj)=i=1naim(ESi)+j=1mbjm(ETj)=Eϕdm+Eψdm\begin{aligned} \int_E (\phi+\psi)dm&=\sum_{i,j=1}^{n,m}(a_i+b_j) m(E\cap S_i\cup T_j) \\ &=\sum_{i=1}^{n} a_i \sum_{j=1}^{m} m(E\cap S_i\cup T_j)+\sum_{j=1}^{m} b_j \sum_{i=1}^{n} m(E\cap S_i\cup T_j) \\ &=\sum_{i=1}^{n} a_i m(E\cap S_i)+\sum_{j=1}^{m} b_j m(E\cap T_j) \\ &=\int_E \phi dm+\int_E \psi dm \end{aligned}
ϕ(x)=i=1naij=1mχSiTj(x)\phi(x)=\sum_{i=1}^{n} a_i\sum_{j=1}^{m} \chi_{S_i\cap T_j}(x) ψ(x)=i=1nbij=1mχSiTj(x)\psi(x)=\sum_{i=1}^{n} b_i\sum_{j=1}^{m} \chi_{S_i\cap T_j}(x)

If xSiTjx\in S_i\cap T_j, then ϕ(x)=ai\phi(x)=a_i and ψ(x)=bj\psi(x)=b_j, therefore aibja_i\leq b_j.

So,

Eϕdm=i=1nj=1maim(ESiTj)i=1nj=1mbim(ESiTj)=Eψdm\begin{aligned} \int_E \phi dm&=\sum_{i=1}^{n} \sum_{j=1}^{m} a_i m(E\cap S_i\cap T_j) \\ &\leq \sum_{i=1}^{n} \sum_{j=1}^{m} b_i m(E\cap S_i\cap T_j) \\ &=\int_E \psi dm \end{aligned}

QED

Back on Wednesday.

Last updated on