Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 32)

Math4121 Lecture 32

Chapter 6: The Lebesgue Integral

Measurable Functions

Definition: A function f:RRf:\mathbb{R}\to\mathbb{R} is measurable on the interval [a,b][a,b] if {x[a,b]:f(x)>c}\{x\in [a,b]:f(x) > c\} is measurable for all cRc\in\mathbb{R}, called the super level set of ff.

Denote {f>c}\{f> c\}

Proposition 6.1

The following are equivalent:

For all cRc\in\mathbb{R},

  1. {x[a,b]:f(x)>c}\{x\in [a,b]:f(x) > c\} is measurable.
  2. {x[a,b]:f(x)<c}\{x\in [a,b]:f(x) < c\} is measurable.
  3. {x[a,b]:f(x)c}\{x\in [a,b]:f(x) \geq c\} is measurable.
  4. {x[a,b]:f(x)c}\{x\in [a,b]:f(x) \leq c\} is measurable.
  5. {xR:cf(x)<d}\{x\in \mathbb{R}:c \leq f(x) < d\} is measurable for all c,dRc,d\in\mathbb{R}.

Proof:

Since the complement of a measurable set is measurable. (1)     \iff (4). and (2)     \iff (3).

We only need to show (1)     \implies (2).

Since {f>c}=n=1{fc+1n}\{f>c\}=\bigcup_{n=1}^{\infty}\{f\geq c+\frac{1}{n}\}.

So (1)     \implies (2).

Since (2)     \implies (1)-(4)     \implies (5).

To see (5)     \implies (1), we have {fc}=n=1{xR:cf(x)<c+n}\{f\geq c\}=\bigcup_{n=1}^{\infty}\{x\in\mathbb{R}:c \leq f(x) < c+n\}

QED

Proposition 6.3

Let f,gf,g be measurable on [a,b][a,b] and αR\alpha\in\mathbb{R}. Then the following are measurable:

  1. f+gf+g
  2. fgfg
  3. αf\alpha f
  4. fα|f|^\alpha

Proof:

If α=0\alpha=0, then αf\alpha f and fα|f|^\alpha are constant functions, hence measurable.

But for constant functions hh, {h>c}={if chRif c<h\{h>c\}=\begin{cases} \emptyset & \text{if } c\geq h \\ \mathbb{R} & \text{if } c < h \end{cases}

For a0a\neq 0, {xR:αf(x)>c}={xR:f(x)>cα}\{x\in \mathbb{R}:\alpha f(x) > c\}=\{x\in \mathbb{R}:f(x) > \frac{c}{\alpha}\}

Similarly, {xR:f(x)α>c}={xR:f(x)>c1/α}={xR:f(x)>c1/α}{xR:f(x)<c1/α}\{x\in \mathbb{R}:|f(x)|^\alpha > c\}=\{x\in \mathbb{R}:|f(x)| > c^{1/\alpha}\}=\{x\in \mathbb{R}:f(x) > c^{1/\alpha}\}\cup\{x\in \mathbb{R}:f(x) < -c^{1/\alpha}\}

We want to show {f+g>c}=qQ{f>q}{g>cq}\{f+g>c\}=\bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}

{f+g>c}qQ{f>q}{g>cq}\{f+g>c\}\supseteq \bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}

if xx is in the RHS, then qQ\exists q\in \mathbb{Q} such that f(x)>qf(x) > q and g(x)>cqg(x) > c-q, therefore f(x)+g(x)>cf(x)+g(x) > c.

So xx is in the LHS.

{f+g>c}qQ{f>q}{g>cq}\{f+g>c\}\subseteq \bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}

Let xRx\in \mathbb{R} such that f(x)+g(x)>cf(x)+g(x) > c. Need to find qQq\in \mathbb{Q} such that f(x)>qf(x) > q and g(x)>cqg(x) > c-q.

Since f(x)>cg(x)f(x)>c-g(x), by the density of Q\mathbb{Q} in R\mathbb{R}, qQ\exists q\in \mathbb{Q} such that q>cg(x)q > c-g(x).

For fgfg, we have fg=14((f+g)2(fg)2)fg=\frac{1}{4}((f+g)^2-(f-g)^2)

So fgfg is measurable.

QED

Limit of Measurable Functions

Proposition 6.4

Let {fn}\{f_n\} be a sequence of measurable functions on [a,b][a,b]. Then,

g(x)=supn1fn(x),infn1fn(x),lim supnfn(x),lim infnfn(x)g(x)=\sup_{n\geq 1}f_n(x),\inf_{n\geq 1}f_n(x),\limsup_{n\to\infty}f_n(x),\liminf_{n\to\infty}f_n(x)

are all measurable functions

Corollary of Proposition 6.4

If {fn}n=1\{f_n\}_{n=1}^{\infty} are measurable functions and f(x)=limnfn(x)f(x)=\lim_{n\to\infty}f_n(x) exists for all x[a,b]x\in[a,b], then ff is measurable. (pointwise limit of measurable functions is measurable)

Definition of almost everywhere

A property holds almost everywhere if it holds everywhere except for a set of measure zero.

Last updated on