Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 28)

Math4121 Lecture 28

Continue from last lecture

Lebesgue Measure

Outer Measure

me(S)=infSj=1Ijj=1(Ij)m_e(S) = \inf_{S \subseteq \bigcup_{j=1}^{\infty} I_j} \sum_{j=1}^{\infty} \ell(I_j)

If SIS\subseteq I is measurable, then mi(S)=me(I)me(IS)m_i(S)=m_e(I)-m_e(I\setminus S)

Lebesgue criterion for measurability

SIS\subseteq I is measurable if and only if me(I)=me(S)+me(IS)m_e(I)=m_e(S)+m_e(I\setminus S)

Caratheodory’s criteria

Lebesgue criterion holds if and only if for any XX of finite outer measure,

me(X)=me(XS)+me(XS)m_e(X)=m_e(X\cap S)+m_e(X\setminus S)

Local additivity

{Ij}j=1\{I_j\}_{j=1}^{\infty} is a collection of disjoint intervals, then

me(Sj=1Ij)=j=1me(SIj)m_e\left(S\cap \bigcup_{j=1}^{\infty} I_j\right) = \sum_{j=1}^{\infty} m_e(S\cap I_j) Proved on Friday

Proof

    \implies If Lebesgue criterion holds for SS, then for any XX of finite outer measure,

me(X)=me(XS)+me(XS)m_e(X)=m_e(X\cap S)+m_e(X\setminus S)

First, we extend Lebesgue criterion to intervals II that may not contain SS. Then we can find J,KJ,K intervals neighboring II such that SI~=JIKS\subseteq \tilde{I}=J\cup I\cup K.

By Lebesgue criterion,

me(I~)=me(I~S)+me(I~S)=me(S)+me(I~S)=me(ScI~)+me(SI~)=L{J,I,K}me(LSc)+me(LS)L{J,I,K}me(L)=me(I~)\begin{aligned} m_e(\tilde{I})&=m_e(\tilde{I}\cap S)+m_e(\tilde{I}\setminus S)\\ &=m_e(S)+m_e(\tilde{I}\setminus S)\\ &=m_e(S^c\cap \tilde{I})+m_e(S\cap \tilde{I})\\ &=\sum_{L\in \{J,I,K\}}m_e(L\cap S^c)+m_e(L\cap S)\\ &\geq \sum_{L\in \{J,I,K\}}m_e(L)\\ &=m_e(\tilde{I}) \end{aligned}

Therefore, me(I)=me(ScI)+me(SI)m_e(I)=m_e(S^c\cap I)+m_e(S\cap I).

Now, let XX has finite outer measure, let ϵ>0\epsilon>0, we can find {Ij}j=1\{I_j\}_{j=1}^{\infty} covering XX and

j=1(Ij)<me(X)+ϵ\sum_{j=1}^{\infty} \ell(I_j)<m_e(X)+\epsilon me(X)me(XS)+me(ScX)me(j=1IjS)+me(j=1IjSc)j=1me(IjS)+me(IjSc)=j=1me(Ij)<me(X)+ϵ\begin{aligned} m_e(X)&\leq m_e(X\cap S)+m_e(S^c\cap X)\\ &\leq m_e\left(\bigcup_{j=1}^{\infty} I_j\cap S\right)+m_e\left(\bigcup_{j=1}^{\infty} I_j\cap S^c\right)\\ &\leq \sum_{j=1}^{\infty} m_e(I_j\cap S)+m_e(I_j\cap S^c)\\ &=\sum_{j=1}^{\infty} m_e(I_j)\\ &<m_e(X)+\epsilon \end{aligned}

Revisit Borel’s criterion

  1. m(I)=(I)m(I)=\ell(I)
  2. If {Sj}j=1\{S_j\}_{j=1}^{\infty} is a sequence of disjoint measurable sets, then m(j=1Sj)=j=1m(Sj)m\left(\bigcup_{j=1}^{\infty} S_j\right)=\sum_{j=1}^{\infty} m(S_j)
  3. If RSR\subseteq S, then m(SR)=m(S)m(R)m(S\setminus R)=m(S)-m(R)

Theorem 5.8 (Countable additivity for Lebesgue measure)

If {Sj}j=1\{S_j\}_{j=1}^{\infty} is a sequence of disjoint measurable sets, whose union S=j=1SjS=\bigcup_{j=1}^{\infty} S_j, has finite outer measure, then

me(S)=j=1me(Sj)m_e(S)=\sum_{j=1}^{\infty} m_e(S_j)

Proof

First we prove me(j=1Sj)=j=1m(Sj)m_e(\bigcup_{j=1}^{\infty} S_j)=\sum_{j=1}^{\infty} m(S_j) by induction.

n=1n=1 is trivial.

Let n>1n>1 and suppose the statement holds for n1n-1. Take X=j=1n1SjX=\bigcup_{j=1}^{n-1} S_j, then SnX=Sn,XSn=j=1n1(Sj)S_n\cap X=S_n, X\setminus S_n=\bigcup_{j=1}^{n-1} (S_j).

By Caratheodory’s criteria,

me(X)=me(Sn)+me(j=1n1Sj)me(j=1nSj)=m(Sn)+j=1n1m(Sj)=j=1nm(Sj)\begin{aligned} m_e(X)&=m_e(S_n)+m_e(\bigcup_{j=1}^{n-1} S_j)\\ m_e(\bigcup_{j=1}^{n} S_j)&=m(S_n)+\sum_{j=1}^{n-1} m(S_j)\\ &=\sum_{j=1}^{n} m(S_j) \end{aligned}

Take the limit as nn\to\infty, and justify this.

j=1m(Sj)=me(j=1Sj)me(S)\sum_{j=1}^{\infty} m(S_j)=m_e(\bigcup_{j=1}^{\infty} S_j)\leq m_e(S)

Since me(S)m_e(S) is finite and m(Sj)m(S_j) is monotone, the limit exists.

Therefore, j=1m(Sj)me(S)j=1m(Sj)\sum_{j=1}^{\infty} m(S_j)\leq m_e(S)\leq \sum_{j=1}^{\infty} m(S_j)

So SS is measurable.

Proposition 5.9 (Preview)

Any finite union (and intersection) of measurable sets is measurable.

Proof

Let S1,S2S_1, S_2 be measurable sets.

We prove by verifying the Caratheodory’s criteria for S1S2S_1\cup S_2.

Last updated on