Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 27)

Math4121 Lecture 27

Lebesgue Measure

Outer Measure

me(S)=inf{n=1(In):Sn=1In}m_e(S)=\inf\left\{\sum_{n=1}^\infty \ell(I_n): S\subset \bigcup_{n=1}^\infty I_n\right\}

where IjI_j is an open interval

Properties:

  1. me(I)=(I)m_e(I)=\ell(I)
  2. Countably sub-additive: me(n=1Sn)n=1me(Sn)m_e\left(\bigcup_{n=1}^\infty S_n\right)\leq \sum_{n=1}^\infty m_e(S_n) (Prove today)
  3. does not respect complementation (Build in to Borel measure)

Why does Jordan content respect complementation?

(Finite union of intervals )C=another finite union of intervals(\text{Finite union of intervals })^C=\text{another finite union of intervals}

We know this failed for countable unions.

Example:

n=1(qnϵ2n,qn+ϵ2n)\bigcup_{n=1}^\infty \left(q_n-\frac{\epsilon}{2^n},q_n+\frac{\epsilon}{2^n}\right)

Where qnq_n is dense.

Inner Measure

Say SIS\subset I

mi(S)=m(I)me(IS)m_i(S)=m(I)-m_e(I\setminus S)

where m(I)=(I)m(I)=\ell(I)

Say SS is (Lebesgue) measurable if mi(S)=me(S)m_i(S)=m_e(S), call this value m(S)=me(S)=mi(S)m(S)=m_e(S)=m_i(S) the (Lebesgue) measure of SS.

Corollary of measurability of subsets

If SS is measurable, and STS\subset T, then

m(S)=me(S)=m(I)me(IS)m(S)=m_e(S)=m(I)-m_e(I\setminus S) m(IS)=m(I)m(S)m(I\setminus S)=m(I)-m(S)

ISI\setminus S is Lebesgue measurable and m(I)=m(S)+m(IS)m(I)=m(S)+m(I\setminus S)

Proposition 5.8 (Countable additivity over measurable sets)

If SnS_n are measurable, then

me(n=1Sn)n=1m(Sn)m_e\left(\bigcup_{n=1}^\infty S_n\right)\leq\sum_{n=1}^\infty m(S_n)

Proof

Let ϵ>0\epsilon>0 and for each jj, let {Ii,j}i=1\{I_{i,j}\}_{i=1}^\infty be a cover of SjS_j s.t.

i=1(Ii,j)<m(Sj)+ϵ2j\sum_{i=1}^\infty \ell(I_{i,j})<m(S_j)+\frac{\epsilon}{2^j}

Then j=1i=1Ii,j\bigcup_{j=1}^\infty \bigcup_{i=1}^\infty I_{i,j} is a countable cover of j=1Sj\bigcup_{j=1}^\infty S_j and

me(j=1Sj)j=1i=1(Ii,j)<j=1(me(Sj)+ϵ2j)=j=1me(Sj)+ϵm_e\left(\bigcup_{j=1}^\infty S_j\right)\leq \sum_{j=1}^\infty \sum_{i=1}^\infty \ell(I_{i,j})<\sum_{j=1}^\infty \left(m_e(S_j)+\frac{\epsilon}{2^j}\right)=\sum_{j=1}^\infty m_e(S_j)+\epsilon

Since ϵ\epsilon is arbitrary, we have

me(j=1Sj)j=1me(Sj)=j=1m(Sj)m_e\left(\bigcup_{j=1}^\infty S_j\right)\leq\sum_{j=1}^\infty m_e(S_j)=\sum_{j=1}^\infty m(S_j)

Corollary: inner measure is always less than or equal to outer measure

mi(S)me(S)m_i(S)\leq m_e(S)

Proof

mi(S)=m(I)me(IS)m(I)mi(IS)=me(S)m_i(S)=m(I)-m_e(I\setminus S)\leq m(I)-m_i(I\setminus S)=m_e(S)

Caratheodory’s Criterion

Lemma 5.7 (Local additivity)

If {Ij}j=1\{I_j\}_{j=1}^\infty are pairwise disjoint open intervals, then

me(S(j=1Ij))=me(j=1(SIj))=j=1me(SIj)m_e\left(S\cap \left(\bigcup_{j=1}^\infty I_j\right)\right)=m_e\left(\bigcup_{j=1}^\infty (S\cap I_j)\right)=\sum_{j=1}^\infty m_e(S\cap I_j)

Proof

For each jj, let {Ji}i=1\{J_i\}_{i=1}^\infty be a cover of S(j=1Ij)S\cap \left(\bigcup_{j=1}^\infty I_j\right) such that i=1(Ji)<ce(S(j=1Ij))+ϵ\sum_{i=1}^\infty \ell(J_i)<c_e(S\cap \left(\bigcup_{j=1}^\infty I_j\right))+\epsilon. Since {Ij}j=1\{I_j\}_{j=1}^\infty are pairwise disjoint, so is {JiIj}j=1\{J_i\cap I_j\}_{j=1}^\infty for each ii.

j=1me(JiIj)=me(Ji)\sum_{j=1}^\infty m_e(J_i\cap I_j)=m_e(J_i) me(S(j=1Ij))j=1me(SIj)j=1me(i=1JiIj)=j=1me(Ji)+ϵ\begin{aligned} m_e\left(S\cap \left(\bigcup_{j=1}^\infty I_j\right)\right)&\leq \sum_{j=1}^\infty m_e(S\cap I_j)\\ &\leq \sum_{j=1}^\infty m_e(\bigcup_{i=1}^\infty J_i\cap I_j)\\ &= \sum_{j=1}^\infty m_e(J_i)+\epsilon \end{aligned}

Since ϵ\epsilon is arbitrary, we have

me(S(j=1Ij))j=1me(SIj)m_e\left(S\cap \left(\bigcup_{j=1}^\infty I_j\right)\right)\leq \sum_{j=1}^\infty m_e(S\cap I_j)

Theorem 5.6 (Caratheodory’s Criterion)

A set SS is measurable if and only if for every set XRX\in \mathbb{R} of finite outer measure,

me(X)=me(XS)+me(XS)m_e(X)=m_e(X\cap S)+m_e(X\setminus S)

Lebesgue: X=IX=I and SIS\subset I we can cut any set by a measurable set to get a measurable set. (no matter how big the set is)

Last updated on