Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 24)

Math4121 Lecture 24

Chapter 5: Measure Theory

Jordan Measurable

Proposition 5.1

A bounded set SRnS\subseteq \mathbb{R}^n is Jordan measurable if

ce(S)=ci(S)+ce(S)c_e(S)=c_i(S)+c_e(\partial S)

where S\partial S is the boundary of SS and ce(S)=0c_e(\partial S)=0.

Examples for Jordan measurable

  1. S=Q[0,1]S=\mathbb{Q}\cap [0,1] is not Jordan measurable.

Since ce(S)=0c_e(S)=0 and S=[0,1]\partial S=[0,1], ci(S)=1c_i(S)=1.

So ce(S)=10c_e(\partial S)=1\neq 0.

  1. SVC(3)SVC(3) is Jordan measurable.

Since ce(S)=0c_e(S)=0 and S=0\partial S=0, ci(S)=0c_i(S)=0. The outer content of the cantor set is 00.

Any set or subset of a set with ce(S)=0c_e(S)=0 is Jordan measurable.

  1. SVC(4)SVC(4)

At each step, we remove 2n2^n intervals of length 14n\frac{1}{4^n}.

So S=n=1CiS=\bigcap_{n=1}^{\infty} C_i and ce(Ck)=ce(Ck1)2k14kc_e(C_k)=c_e(C_{k-1})-\frac{2^{k-1}}{4^k}. ce(C0)=1c_e(C_0)=1.

So

ce(S)limkce(Ck)=1k=12k14k=114k=0(24)k=1141124=114112=112=12.\begin{aligned} c_e(S)&\leq \lim_{k\to\infty} c_e(C_k)\\ &=1-\sum_{k=1}^{\infty} \frac{2^{k-1}}{4^k}\\ &=1-\frac{1}{4}\sum_{k=0}^{\infty} \left(\frac{2}{4}\right)^k\\ &=1-\frac{1}{4}\cdot \frac{1}{1-\frac{2}{4}}\\ &=1-\frac{1}{4}\cdot \frac{1}{\frac{1}{2}}\\ &=1-\frac{1}{2}\\ &=\frac{1}{2}. \end{aligned}

And we can also claim that ci(S)12c_i(S)\geq \frac{1}{2}. Suppose not, then {Ij}j=1\exists \{I_j\}_{j=1}^{\infty} such that Sj=1IjS\subseteq \bigcup_{j=1}^{\infty} I_j and j=1(Ij)<12\sum_{j=1}^{\infty} \ell(I_j)< \frac{1}{2}.

Then SS would have gaps with lengths summing to greater than 12\frac{1}{2}. This contradicts with what we just proved.

So ce(SVC(4))=12c_e(SVC(4))=\frac{1}{2}.

General formula for ce(SVC(n))=n3n2c_e(SVC(n))=\frac{n-3}{n-2}, and since SVC(n)SVC(n) is nowhere dense, ci(SVC(n))=0c_i(SVC(n))=0.

Additivity of Content

Recall that outer content is sub-additive. Let S,TRnS,T\subseteq \mathbb{R}^n be disjoint.

ce(ST)ce(S)+ce(T)c_e(S\cup T)\leq c_e(S)+c_e(T)

The inner content is super-additive. Let S,TRnS,T\subseteq \mathbb{R}^n be disjoint.

ci(ST)ci(S)+ci(T)c_i(S\cup T)\geq c_i(S)+c_i(T)

Proposition 5.2

Finite additivity of Jordan content:

Let S1,,SNRnS_1,\ldots,S_N\subseteq \mathbb{R}^n are pairwise disjoint Jordan measurable sets, then

c(i=1NSi)=i=1Nc(Si)c(\bigcup_{i=1}^N S_i)=\sum_{i=1}^N c(S_i)

Proof

i=1Nci(Si)ci(i=1NSi)ce(i=1NSi)i=1Nce(Si)\begin{aligned} \sum_{i=1}^N c_i(S_i)&\leq c_i(\bigcup_{i=1}^N S_i)\\ &\leq c_e(\bigcup_{i=1}^N S_i)\\ &\leq \sum_{i=1}^N c_e(S_i)\\ \end{aligned}

Since i=1Nc(Si)=i=1Nce(Si)=i=1Nci(Si)\sum_{i=1}^N c(S_i)=\sum_{i=1}^N c_e(S_i)=\sum_{i=1}^N c_i(S_i), we have

c(i=1NSi)=i=1Nc(Si)c(\bigcup_{i=1}^N S_i)=\sum_{i=1}^N c(S_i)
Failure for countable additivity for Jordan content

Notice that each singleton {q}\{q\} is Jordan measurable and c({q})=0c(\{q\})=0. But take aQ[0,1]a\in \mathbb{Q}\cap [0,1], Q[0,1]=qQ[0,1]{q}Q\cap [0,1]=\bigcup_{q\in Q\cap [0,1]} \{q\}, but Q[0,1]\mathbb{Q}\cap [0,1] is not Jordan measurable.

Issue is a countable union of Jordan measurable sets is not necessarily Jordan measurable.

Last updated on