Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 2)

Math4121 Lecture 2

Chapter 5: Differentiation

Continue on Differentiation

Theorem 5.5: Chain Rule

Suppose

  1. f:[a,b]Rf:[a,b]\to \mathbb{R} is continuous on [a,b][a,b] (or some neighborhood of xx)
  2. f(x)f'(x) exists at some point x(a,b)x\in (a,b) (ff is differentiable at xx)
  3. gg is defined on an interval [c,d][c,d] containing the range of ff, (f([a,b])[c,d]f([a,b])\subset [c,d])
  4. gg is differentiable at the point f(x)f(x)

Let h=gfh=g\circ f (h=g(f(x))h=g(f(x))) where ff is differentiable at xx and gg is differentiable at f(x)f(x). Then hh is differentiable at xx and

h(x)=g(f(x))f(x)h'(x) = g'(f(x))f'(x)

Proof:

Let y=f(x)y=f(x) and u(t)=f(t)f(x)txf(x)u(t)=\frac{f(t)-f(x)}{t-x}-f'(x) for tx,t[a,b]t\neq x,t\in [a,b], v(s)=g(s)g(y)syg(y)v(s)=\frac{g(s)-g(y)}{s-y}-g'(y) for sy,s[c,d]s\neq y,s\in [c,d].

Notice that u(t)0u(t)\to 0 as txt\to x and v(s)0v(s)\to 0 as sys\to y.

Pick s=f(t)s=f(t) for t[a,b]t\in [a,b] so that sys\to y as txt\to x. Then

h(t)h(x)=g(f(t))g(f(x))=g(t)g(y)=(sy)(g(y)+v(s))=(f(t)f(x))(g(y)+v(s))=(tx)(f(x)+u(t))(g(y)+v(s))\begin{aligned} h(t)-h(x) &= g(f(t))-g(f(x)) \\ &= g(t)-g(y) \\ &= (s-y)(g'(y)+v(s)) \\ &= (f(t)-f(x))(g'(y)+v(s)) \\ &= (t-x)(f'(x)+u(t))(g'(y)+v(s)) \\ \end{aligned}

So h(x)=h(t)h(x)tx=(f(x)+u(t))(g(y)+v(s))h'(x)=\frac{h(t)-h(x)}{t-x}=(f'(x)+u(t))(g'(y)+v(s)). Since u(t)0u(t)\to 0 and v(s)0v(s)\to 0 as txt\to x and sys\to y, we have h(x)=g(y)f(x)h'(x)=g'(y)f'(x).

QED

Example 5.6

(a) Let f(x)={xsin1xx00x=0f(x)=\begin{cases} x\sin\frac{1}{x} & x\neq 0 \\ 0 & x=0 \end{cases}

For x0x\neq 0,

f(x)=1sin1x+xcos1x1x2=sin1xcos1xx\begin{aligned} f'(x) &= 1\cdot\sin\frac{1}{x}+x\cos\frac{1}{x}\cdot\frac{-1}{x^2} \\ &= \sin\frac{1}{x}-\frac{\cos\frac{1}{x}}{x} \end{aligned}

For x=0x=0,

f(0)=limx0f(x)f(0)x0=limx0xsin1xx=limx0sin1x\begin{aligned} f'(0) &= \lim_{x\to 0}\frac{f(x)-f(0)}{x-0} \\ &= \lim_{x\to 0}\frac{x\sin\frac{1}{x}}{x} \\ &= \lim_{x\to 0}\sin\frac{1}{x} \end{aligned}

This limit does not exist, so ff is not differentiable at x=0x=0.

(b) Let f(x)={x2sin1xx00x=0f(x)=\begin{cases} x^2 \sin\frac{1}{x} & x\neq 0 \\ 0 & x=0 \end{cases}

For x0x\neq 0,

f(x)=2xsin1x+x2cos1x1x2=2xsin1xcos1x\begin{aligned} f'(x) &= 2x\sin\frac{1}{x}+x^2\cos\frac{1}{x}\cdot\frac{-1}{x^2} \\ &= 2x\sin\frac{1}{x}-\cos\frac{1}{x} \end{aligned}

For x=0x=0,

f(0)=limx0f(x)f(0)x0=limx0x2sin1xx=limx0xsin1x=0\begin{aligned} f'(0) &= \lim_{x\to 0}\frac{f(x)-f(0)}{x-0} \\ &= \lim_{x\to 0}\frac{x^2\sin\frac{1}{x}}{x} \\ &= \lim_{x\to 0}x\sin\frac{1}{x}\\ &= 0 \end{aligned}

So f(x)={2xsin1xcos1xx00x=0f'(x)=\begin{cases} 2x\sin\frac{1}{x}-\cos\frac{1}{x} & x\neq 0 \\ 0 & x=0 \end{cases}.

Notice that f(x)f'(x) is not continuous at x=0x=0 since limx0f(x)\lim_{x\to 0}f'(x) is undefined.

Mean Value Theorem

Definition 5.7: Local Extrema

Let f:[a,b]Rf:[a,b]\to \mathbb{R}. We say that ff has a local maximum (or minimum) at x[a,b]x\in [a,b] if there exists some δ>0\delta>0 such that

f(x)f(t) for all xt<δf(x)\geq f(t) \text{ for all }|x-t|<\delta

for local maximum, and

f(x)f(t) for all xt<δf(x)\leq f(t) \text{ for all }|x-t|<\delta

for local minimum.

Theorem 5.8

If f:[a,b]Rf:[a,b]\to \mathbb{R} has a local maximum (or minimum) at x(a,b)x\in (a,b) and ff is differentiable at xx, then f(x)=0f'(x)=0.

Proof:

We can find δ>0\delta>0 such that a<xδ<x<x+δ<ba<x-\delta<x<x+\delta<b.

And for all xδ<t<x+δx-\delta<t<x+\delta,

If xδ<t<xx-\delta<t<x, then f(x)f(t)f(x)\geq f(t) so f(t)f(x)tx0\frac{f(t)-f(x)}{t-x}\leq 0.

If x<t<x+δx<t<x+\delta, then f(x)f(t)f(x)\geq f(t) so f(t)f(x)tx0\frac{f(t)-f(x)}{t-x}\geq 0.

So limtxf(t)f(x)tx=0\lim_{t\to x}\frac{f(t)-f(x)}{t-x}=0.

QED

Last updated on