Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 12)

Math4121 Lecture 12

Chapter 7: Uniform Convergence and Integrals

Our goal is to solve problems like this:

Let

sn,m=mm+ns_{n,m}=\frac{m}{m+n}

The different order of computation gives different results:

limnlimmsn,m=1\lim_{n\to\infty}\lim_{m\to\infty}s_{n,m}=1 limmlimnsn,m=0\lim_{m\to\infty}\lim_{n\to\infty}s_{n,m}=0

We cannot always switch the order of limits. We cannot also do this on derivatives.

Examples

Example 7.4

fm(x)=limncos(m!xπ)2nf_m(x)=\lim_{n\to\infty}cos(m!x\pi)^{2n}

If cos(m!xπ)2n=±1cos(m!x\pi)^{2n}=\pm 1, then fm(x)=1f_m(x)=1.

If not, then cos(m!xπ)2n<1|cos(m!x\pi)^{2n}|<1.

fm(x)={1if m!x is an integer0if otherwisef_m(x)=\begin{cases} 1 & \text{if } m!x\text{ is an integer} \\ 0 & \text{if } \text{otherwise} \end{cases}

This function “raise” the fractions with all denominators less than mm.

limmfm(x)={1if x is an rational number0if otherwise\lim_{m\to\infty}f_m(x)= \begin{cases} 1 & \text{if } x\text{ is an rational number} \\ 0 & \text{if } \text{otherwise} \end{cases}

So this function is not Riemann integrable. (show in homework)

But

gn,m(x)=cos(m!xπ)2ng_{n,m}(x)=cos(m!x\pi)^{2n}

is continuous, and

limmlimngn,m(x)=f(x)\lim_{m\to\infty}\lim_{n\to\infty}g_{n,m}(x)=f(x)

So the function is not Riemann integrable.

Definition 7.7

A sequence of functions {fn}\{f_n\} converges uniformly to ff on set EE if

ϵ>0,N,nN,xE,fn(x)f(x)<ϵ\forall \epsilon>0, \exists N, \forall n\geq N, \forall x\in E, |f_n(x)-f(x)|<\epsilon

If EE is just a point, then it is the common definition of convergence.

If you have uniform convergence, then you can switch the order of limits.

Uniform Convergence and Integrals

Theorem 7.16

Suppose {fn}R(α)\{f_n\}\in\mathscr{R}(\alpha) on [a,b][a,b] that converges uniformly to ff on [a,b][a,b]. Then fR(α)f\in\mathscr{R}(\alpha) on [a,b][a,b] and

abf(x)dα=limnabfn(x)dα\int_a^b f(x)d\alpha=\lim_{n\to\infty}\int_a^b f_n(x)d\alpha

Proof

Define ϵn=supx[a,b]fn(x)f(x)\epsilon_n=\sup_{x\in[a,b]}|f_n(x)-f(x)|.

By uniform convergence, ϵn0\epsilon_n\to 0 as nn\to\infty.

fn(x)ϵnf(x)fn(x)+ϵnf_n(x)-\epsilon_n\leq f(x)\leq f_n(x)+\epsilon_n abfnϵndαabfdαabfn+ϵndα\int_a^b f_n-\epsilon_nd\alpha\leq\overline{\int_a^b}fd\alpha\leq\int_a^bf_n+\epsilon_nd\alpha abfnϵndαabfdαabfn+ϵndα\int_a^b f_n-\epsilon_n d\alpha\leq\underline{\int_a^b}fd\alpha\leq\int_a^b f_n+\epsilon_n d\alpha

So,

0abfdαabfdαabϵndα+abϵndα=2ϵn[α(b)α(a)]0\leq\overline{\int_a^b}fd\alpha-\underline{\int_a^b}fd\alpha\leq\int_a^b \epsilon_n d\alpha+\int_a^b \epsilon_n d\alpha=2\epsilon_n[\alpha(b)-\alpha(a)]

So fR(α)f\in\mathscr{R}(\alpha) and

abfdαabfndα+abϵndαabfdα+2ϵndα\int_a^b fd\alpha\leq \int_a^b f_n d\alpha+\int_a^b \epsilon_n d\alpha\leq \int_a^b fd\alpha+2\epsilon_n d\alpha

So,

abfdαabϵndαabfndαabfdα+abϵndα\int_a^b fd\alpha-\int_a^b \epsilon_n d\alpha\leq \int_a^b f_n d\alpha\leq \int_a^b fd\alpha+\int_a^b \epsilon_n d\alpha

Since abϵndα0\int_a^b \epsilon_n d\alpha\to 0 as nn\to\infty, by the squeeze theorem, we have

by the squeeze theorem, we have

limnabfndα=abfdα\lim_{n\to\infty}\int_a^b f_nd\alpha=\int_a^b fd\alpha

Key is that ab(ffn)dαsupx[a,b]ffn(α(b)α(a))\int_a^b (f-f_n)d\alpha\leq \sup_{x\in[a,b]}|f-f_n|(\alpha(b)-\alpha(a))

Last updated on