Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 11)

Lecture 11

Recap

I(x)={0x01x>0I(x)=\begin{cases} 0 & x\leq 0 \\ 1 & x>0 \end{cases}

Continue on Chapter 6

The step function

Theorem 6.16

If cn\sum c_n converges and {sn}\{s_n\} is a sequence of distinct elements of (a,b)(a,b), and ff is continuous on [a,b][a,b], and α(x)=n=1cnI(xsn)\alpha(x)=\sum_{n=1}^{\infty}c_nI(x-s_n), then abf dα=n=1cnf(sn)\int_a^bf \ d\alpha=\sum_{n=1}^{\infty}c_nf(s_n).

Proof:

For each xx, I(xsn)1I(x-s_n)\leq 1 so n=1cnI(xsn)n=1cn\sum_{n=1}^{\infty}c_nI(x-s_n)\leq \sum_{n=1}^{\infty}c_n converges (by comparison test).

Let ϵ>0\epsilon>0. We can find NN such that n=N+1cn<ϵ\sum_{n=N+1}^{\infty}c_n<\epsilon. (Recall that the series n=1cn\sum_{n=1}^{\infty}c_n converges if and only if limNn=1Ncn\lim_{N\to\infty}\sum_{n=1}^{N}c_n exists.)

Set α1(x)=n=1NcnI(xsn)\alpha_1(x)=\sum_{n=1}^{N}c_nI(x-s_n), and α2(x)=n=N+1cnI(xsn)\alpha_2(x)=\sum_{n=N+1}^{\infty}c_nI(x-s_n).

Using the linearity of the integral, we have

abf dα1=n=1Ncnabfd(I(xsn))=n=1Ncnf(sn)\int_a^b f\ d\alpha_1= \sum_{n=1}^{N}c_n\int_a^b fd(I(x-s_n))= \sum_{n=1}^{N}c_nf(s_n)

On the other hand, with M=supfM=\sup|f|,

abf dα2abf dα2Mabα2 dx=Mn=N+1cn(bsn)<ϵ\left|\int_a^b f\ d\alpha_2\right|\leq \int_a^b |f|\ d\alpha_2\leq M\int_a^b \alpha_2\ dx=M\sum_{n=N+1}^{\infty}c_n(b-s_n)<\epsilon

So,

abf dαn=1cnf(sn)=abf dα2n=N+1cnf(sn)Mϵn=N+1cnM(bsn)<2Mϵ\begin{aligned} \left|\int_a^b f\ d\alpha-\sum_{n=1}^{\infty}c_nf(s_n)\right|&= \left|\int_a^b f\ d\alpha_2-\sum_{n=N+1}^{\infty}c_nf(s_n)\right|\\ &\leq |M\epsilon-\sum_{n=N+1}^{\infty}|c_n|M(b-s_n)|\\ &<2M\epsilon \end{aligned}

Since ϵ\epsilon is arbitrary, we have abf dα=n=1cnf(sn)\int_a^b f\ d\alpha=\sum_{n=1}^{\infty}c_nf(s_n).

Integration and differentiation

Theorem 6.20 Fundamental theorem of calculus

Let fRf\in \mathscr{R} for x[a,b]x\in [a,b]. We define F(x)=axf(t) dtF(x)=\int_a^x f(t)\ dt. Then FF is continuous and if ff is continuous at x0[a,b]x_0\in [a,b], then FF is differentiable at x0x_0 and F(x0)=f(x0)F'(x_0)=f(x_0).

Proof:

Let x<y,x,y[a,b]x<y,x,y\in [a,b]. Then,

F(y)F(x)=ayf(t) dtaxf(t) dt=xyf(t) dtsupf(yx)|F(y)-F(x)|=\left|\int_a^y f(t)\ dt-\int_a^x f(t)\ dt\right|=\left|\int_x^y f(t)\ dt\right|\leq \sup|f|\cdot (y-x)

So, FF is continuous on [a,b][a,b].

Now, let ff be continuous at x0(a,b)x_0\in (a,b) and ϵ>0\epsilon>0. Then we can find δ>0\delta>0 such that a<x0δ<s<x0<t<x0+δ<ba<x_0-\delta<s<x_0<t<x_0+\delta<b and f(u)f(x0)<ϵ|f(u)-f(x_0)|<\epsilon for all u(x0δ,x0+δ)u\in (x_0-\delta,x_0+\delta).

So,

F(s)F(x0)sx0f(x0)=1sx0(asf(u) duax0f(u) du)f(x0)=1sx0(sx0f(u) du)1sx0(sx0f(x0) dv)f(x0)=1x0s(sx0[f(u)f(x0)] du)1x0sϵ(x0s)=ϵ\begin{aligned} \left|\frac{F(s)-F(x_0)}{s-x_0}-f(x_0)\right|&=\left|\frac{1}{s-x_0}\left(\int_a^s f(u)\ du-\int_a^{x_0} f(u)\ du\right)-f(x_0)\right|\\ &=\left|\frac{1}{s-x_0}\left(\int_s^{x_0} f(u)\ du\right)-\frac{1}{s-x_0}\left(\int_s^{x_0} f(x_0)\ dv\right)-f(x_0)\right|\\ &=\left|\frac{1}{x_0-s}\left(\int_s^{x_0} [f(u)-f(x_0)]\ du\right)\right|\\ &\leq \frac{1}{x_0-s}\epsilon(x_0-s)\\ &= \epsilon \end{aligned}

QED

If fRf\in \mathscr{R}, and there exists a differentiable function F:[a,b]RF:[a,b]\to \mathbb{R} such that F=fF'=f on (a,b)(a,b), then

abf(x) dx=F(b)F(a)\int_a^b f(x)\ dx=F(b)-F(a)

Proof:

Let ϵ>0\epsilon>0 and P={x0,x1,,xn}P=\{x_0,x_1,\cdots,x_n\} be a partition of [a,b][a,b].

By the mean value theorem, on each subinterval [xi1,xi][x_{i-1},x_i], there exists ti(xi1,xi)t_i\in (x_{i-1},x_i) such that

F(xi)F(xi1)=F(ti)(xixi1)=f(ti)ΔxiF(x_i)-F(x_{i-1})=F'(t_i)(x_i-x_{i-1})=f(t_i)\Delta x_i

Since mif(ti)Mim_i\leq f(t_i)\leq M_i, notices that i=1nf(ti)Δxi=F(b)F(a)\sum_{i=1}^n f(t_i)\Delta x_i=F(b)-F(a).

So,

L(P,f)F(b)F(a)U(P,f)L(P,f)\leq F(b)-F(a)\leq U(P,f)

So, fRf\in \mathscr{R} and abf(x) dx=F(b)F(a)\int_a^b f(x)\ dx=F(b)-F(a).

QED

Last updated on