Skip to Content
Math4121Introduction to Lebesgue Integration (Lecture 10)

Math4121 Lecture 10

Recap

Properties of Riemann-Stieltjes Integral

Linearity (Theorem 6.12 (a))

If f,gR(α)f,g\in \mathscr{R}(\alpha) on [a,b]R,c,dR[a, b]\subset \mathbb{R},c,d\in \mathbb{R}, then cf+dgR(α)cf+dg\in \mathscr{R}(\alpha) on [a,b][a, b] and

ab(cf+dg)dα=cabfdα+dabgdα\int_a^b (cf+dg)d\alpha = c\int_a^b f d\alpha + d\int_a^b g d\alpha

Composition (Theorem 6.11)

Suppose fR(α)f\in \mathscr{R}(\alpha) on [a,b][a, b], mf(x)Mm\leq f(x)\leq M for all x[a,b]x\in [a, b], and ϕ\phi is continuous on [m,M][m, M], and let h(x)=ϕ(f(x))h(x)=\phi(f(x)) on [a,b][a, b]. Then hR(α)h\in \mathscr{R}(\alpha) on [a,b][a, b].

Monotonicity (Theorem 6.12 (b))

If f,gR(α)f,g\in \mathscr{R}(\alpha) on [a,b][a, b], and f(x)g(x),x[a,b]f(x)\leq g(x),\forall x\in [a, b], then abfdαabgdα\int_a^b f d\alpha \leq \int_a^b g d\alpha.

Continue on Chapter 6

Properties of Integrable Functions

Theorem 6.13

Suppose f,gR(α)f,g\in \mathscr{R}(\alpha) on [a,b][a, b], and c(a,b)c\in (a, b). Then

(a) fgR(α)fg\in \mathscr{R}(\alpha) on [a,b][a, b].

Proof:

By linearity, f+g,fgR(α)f+g,f-g\in \mathscr{R}(\alpha) on [a,b][a, b].

Moreover, let ϕ(x)=x2\phi(x)=x^2, which is continuous on R\mathbb{R}.

By Theorem 6.11, f2,g2R(α)f^2,g^2\in \mathscr{R}(\alpha) on [a,b][a, b].

By linearity, fg=1/4((f+g)2(fg)2)R(α)fg=1/4((f+g)^2-(f-g)^2)\in \mathscr{R}(\alpha) on [a,b][a, b].

QED

(b) fR(α)|f|\in \mathscr{R}(\alpha) on [a,b][a, b], and abfdαabfdα|\int_a^b f d\alpha|\leq \int_a^b |f| d\alpha.

Proof:

Let ϕ(x)=x\phi(x)=|x|, which is continuous on R\mathbb{R}.

By Theorem 6.11, fR(α)|f|\in \mathscr{R}(\alpha) on [a,b][a, b].

Let c=1c=-1 or c=1c=1. such that cabfdα=abfdαc\int_a^b f d\alpha=| \int_a^b f d\alpha|.

By linearity, cabfdα=abcfdαc\int_a^b f d\alpha=\int_a^b cfd\alpha. Since cffcf\leq |f|, by monotonicity, abcfdα=abcfdαabfdα|\int_a^b cfd\alpha|=\int_a^b cfd\alpha\leq \int_a^b |f| d\alpha.

QED

Indicator Function

Definition 6.14

The unit step function is defined as

I(x)={0,x01,x>0I(x)=\begin{cases} 0, & x\le 0 \\ 1, & x>0 \end{cases}

Theorem 6.15

Let a<s<ba<s<b. ff is bounded on [a,b][a, b] and continuous at ss. Define α(x)=I(xs)\alpha(x)=I(x-s) on [a,b][a, b]. Then fR(α)f\in \mathscr{R}(\alpha) on [a,b][a, b], and abfdα=f(s)\int_a^b f d\alpha=f(s).

Proof:

Under the hypothesis, ff is bounded on [a,b][a, b] and continuous at ss.

We can choose partition P={x0,x1,x2,x3}P=\{x_0,x_1,x_2,x_3\} such that a=x0<x1=s<x2<x3=ba=x_0<x_1=s<x_2<x_3=b.

Then,

U(P,f,α)=i=13Mi(α(xi)α(xi1))=M1(00)+M2(10)+M3(11)=supx[s,x2]f(x)(α(x2)α(s))=supx[s,x2]f(x)(10)=M2\begin{aligned} U(P,f,\alpha)&=\sum_{i=1}^3 M_i(\alpha(x_i)-\alpha(x_{i-1}))\\ &=M_1(0-0)+M_2(1-0)+M_3(1-1)\\ &=\sup_{x\in [s,x_2]}f(x)(\alpha(x_2)-\alpha(s))\\ &=\sup_{x\in [s,x_2]}f(x)(1-0)\\ &=M_2 \\ \end{aligned} L(P,f,α)=i=13mi(α(xi)α(xi1))=m1(00)+m2(10)+m3(11)=infx[s,x2]f(x)(α(x2)α(s))=infx[s,x2]f(x)(10)=m2\begin{aligned} L(P,f,\alpha)&=\sum_{i=1}^3 m_i(\alpha(x_i)-\alpha(x_{i-1}))\\ &=m_1(0-0)+m_2(1-0)+m_3(1-1)\\ &=\inf_{x\in [s,x_2]}f(x)(\alpha(x_2)-\alpha(s))\\ &=\inf_{x\in [s,x_2]}f(x)(1-0)\\ &=m_2 \\ \end{aligned}

Since ff is continuous at ss, when xsx\to s, U(P,f,α)f(s)U(P,f,\alpha)\to f(s) and L(P,f,α)f(s)L(P,f,\alpha)\to f(s).

Therefore, U(P,f,α)L(P,f,α)0U(P,f,\alpha)-L(P,f,\alpha)\to 0, fR(α)f\in \mathscr{R}(\alpha) on [a,b][a, b], and abfdα=f(s)\int_a^b f d\alpha=f(s).

QED

Last updated on