Skip to Content
Math4121Exam reviewsMath4121 Exam 1 Review

Math4121 Exam 1 Review

Range: Chapter 5 and 6 of Rudin. We skipped (and so you will not be tested on)

  • Differentiation of Vector Valued Functions (pp. 111-113)
  • Integration of Vector-Valued Function and Rectifiable Curves (pp.135-137)

You will also not be tested on Uniform Convergence and Integration, which we cover in class on Monday 2/10.

Chapter 5: Differentiation

Definition of the Derivative

Let ff be a real function defined on an closed interval [a,b][a,b]. We say that ff is differentiable at a point x[a,b]x \in [a,b] if the following limit exists:

f(x)=limtxf(t)f(x)txf'(x) = \lim_{t\to x} \frac{f(t) - f(x)}{t - x}

If the limit exists, we call it the derivative of ff at xx and denote it by f(x)f'(x).

Theorem 5.2

Every differentiable function is continuous .

The converse is not true, consider f(x)=xf(x) = |x|.

Theorem 5.3

If f,gf,g are differentiable at xx, then

  1. (f+g)(x)=f(x)+g(x)(f+g)'(x) = f'(x) + g'(x)
  2. (fg)(x)=f(x)g(x)+f(x)g(x)(fg)'(x) = f'(x)g(x) + f(x)g'(x)
  3. If g(x)0g(x) \neq 0, then (f/g)(x)=(f(x)g(x)f(x)g(x))/g(x)2(f/g)'(x) = (f'(x)g(x) - f(x)g'(x))/g(x)^2

Theorem 5.4

Constant function is differentiable and its derivative is 00.

Theorem 5.5

Chain rule: If ff is differentiable at xx and gg is differentiable at f(x)f(x), then the composite function gfg\circ f is differentiable at xx and

(gf)(x)=g(f(x))f(x)(g\circ f)'(x) = g'(f(x))f'(x)

Theorem 5.8

The derivative of local extremum (δ>0\exists \delta > 0 s.t. f(x)f(y)f(x)\geq f(y) or f(x)f(y)f(x)\leq f(y) for all y(xδ,x+δ)y\in (x-\delta,x+\delta)) is 00.

Theorem 5.9

Generalized mean value theorem: If f,gf,g are differentiable on (a,b)(a,b), then there exists a point x(a,b)x\in (a,b) such that

(f(b)f(a))g(x)=(g(b)g(a))f(x)(f(b)-f(a))g'(x) = (g(b)-g(a))f'(x)

If we put g(x)=xg(x) = x, we get the mean value theorem.

f(b)f(a)=f(x)(ba)f(b)-f(a) = f'(x)(b-a)

for some x(a,b)x\in (a,b).

Theorem 5.12

Intermediate value theorem:

If ff is differentiable on [a,b][a,b], for all λ\lambda between f(a)f'(a) and f(b)f'(b), there exists a c(a,b)c\in (a,b) such that f(x)=λf'(x) = \lambda.

Theorem 5.13

L’Hôpital’s rule: If f,gf,g are differentiable in (a,b)(a,b) and g(x)0g'(x) \neq 0 for all x(a,b)x\in (a,b), where a<b-\infty \leq a < b \leq \infty,

Suppose

f(x)g(x)A as xa\frac{f'(x)}{g'(x)} \to A \text{ as } x\to a

If

f(x)0,g(x)0 as xaf(x) \to 0, g(x) \to 0 \text{ as } x\to a

or if

g(x) as xag(x) \to \infty \text{ as } x\to a

then

limxaf(x)g(x)=A\lim_{x\to a} \frac{f(x)}{g(x)} = A

Theorem 5.15

Taylor’s theorem: If ff is nn times differentiable on [a,b][a,b], f(n1)f^{(n-1)} is continuous on [a,b][a,b], and f(n)f^{(n)} exists on (a,b)(a,b), for any distinct points α,β[a,b]\alpha, \beta \in [a,b], there exists a point x(α,β)x\in (\alpha, \beta) such that

f(β)=(k=0n1f(k)(α)k!(βα)k)+f(n)(x)n!(βα)nf(\beta) =\left(\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(\beta-\alpha)^k\right) + \frac{f^{(n)}(x)}{n!}(\beta-\alpha)^n

Chapter 6: Riemann-Stieltjes Integration

Definition of the Integral

Let α\alpha be a monotonically increasing function on [a,b][a,b].

A partition of [a,b][a,b] is a set of points P={x0,x1,,xn}P = \{x_0, x_1, \cdots, x_n\} such that

a=x0<x1<<xn=ba = x_0 < x_1 < \cdots < x_n = b

Let Δαi=α(xi)α(xi1)\Delta \alpha_i = \alpha(x_{i}) - \alpha(x_{i-1}) for i=1,,ni = 1, \cdots, n.

Let mi=inf{f(x):xi1xxi}m_i = \inf \{f(x) : x_{i-1} \leq x \leq x_{i}\} and Mi=sup{f(x):xi1xxi}M_i = \sup \{f(x) : x_{i-1} \leq x \leq x_{i}\} for i=1,,ni = 1, \cdots, n.

The lower sum of ff with respect to α\alpha is

L(f,P,α)=i=1nmiΔαiL(f,P,\alpha) = \sum_{i=1}^{n} m_i \Delta \alpha_i

The upper sum of ff with respect to α\alpha is

U(f,P,α)=i=1nMiΔαiU(f,P,\alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i

Let abf(x)dα(x)=supPL(f,P,α)\overline{\int_a^b} f(x) d\alpha(x)=\sup_P L(f,P,\alpha) and abf(x)dα(x)=infPU(f,P,α)\underline{\int_a^b} f(x) d\alpha(x)=\inf_P U(f,P,\alpha).

If abf(x)dα(x)=abf(x)dα(x)\overline{\int_a^b} f(x) d\alpha(x) = \underline{\int_a^b} f(x) d\alpha(x), we say that ff is Riemann-Stieltjes integrable with respect to α\alpha on [a,b][a,b] and we write

abf(x)dα(x)=abf(x)dα(x)=abf(x)dα(x)\int_a^b f(x) d\alpha(x) = \overline{\int_a^b} f(x) d\alpha(x) = \underline{\int_a^b} f(x) d\alpha(x)

Theorem 6.4

Refinement of partition will never make the lower sum smaller or the upper sum larger.

L(f,P,α)L(f,P,α)U(f,P,α)U(f,P,α)L(f,P,\alpha) \leq L(f,P^*,\alpha) \leq U(f,P^*,\alpha) \leq U(f,P,\alpha)

Theorem 6.5

abf(x)dα(x)abf(x)dα(x)\underline{\int_a^b} f(x) d\alpha(x) \leq \overline{\int_a^b} f(x) d\alpha(x)

Theorem 6.6

fR(α)f\in \mathscr{R}(\alpha) on [a,b][a,b] if and only if for every ϵ>0\epsilon > 0, there exists a partition PP of [a,b][a,b] such that

U(f,P,α)L(f,P,α)<ϵU(f,P,\alpha) - L(f,P,\alpha) < \epsilon

Theorem 6.8

Every continuous function on a closed interval is Riemann-Stieltjes integrable with respect to any monotonically increasing function.

Theorem 6.9

If ff is monotonically increasing on [a,b][a,b] and α\alpha is continuous on [a,b][a,b], then fR(α)f\in \mathscr{R}(\alpha) on [a,b][a,b].

Key: We can repartition the interval [a,b][a,b] using ff.

Theorem 6.10

If ff is bounded on [a,b][a,b] and has only finitely many discontinuities on [a,b][a,b], then fR(α)f\in \mathscr{R}(\alpha) on [a,b][a,b].

Key: We can use the bound and partition around the points of discontinuity to make the error arbitrary small.

Theorem 6.11

If fR(α)f\in \mathscr{R}(\alpha) on [a,b][a,b], and mf(x)Mm\leq f(x) \leq M for all x[a,b]x\in [a,b], and ϕ\phi is a continuous function on [m,M][m,M], then ϕfR(α)\phi\circ f\in \mathscr{R}(\alpha) on [a,b][a,b].

Composition of bounded integrable functions and continuous functions is integrable.

Theorem 6.12

Properties of the integral:

Let f,gR(α)f,g\in \mathscr{R}(\alpha) on [a,b][a,b], and cc be a constant. Then

  1. f+gR(α)f+g\in \mathscr{R}(\alpha) on [a,b][a,b] and ab(f(x)+g(x))dα(x)=abf(x)dα(x)+abg(x)dα(x)\int_a^b (f(x) + g(x)) d\alpha(x) = \int_a^b f(x) d\alpha(x) + \int_a^b g(x) d\alpha(x)
  2. cfR(α)cf\in \mathscr{R}(\alpha) on [a,b][a,b] and abcf(x)dα(x)=cabf(x)dα(x)\int_a^b cf(x) d\alpha(x) = c\int_a^b f(x) d\alpha(x)
  3. fR(α)f\in \mathscr{R}(\alpha) on [a,b][a,b] and c[a,b]c\in [a,b], then abf(x)dα(x)=acf(x)dα(x)+cbf(x)dα(x)\int_a^b f(x) d\alpha(x) = \int_a^c f(x) d\alpha(x) + \int_c^b f(x) d\alpha(x).
  4. Favorite Estimate: If f(x)M|f(x)| \leq M for all x[a,b]x\in [a,b], then abf(x)dα(x)M(α(b)α(a))\left|\int_a^b f(x) d\alpha(x)\right| \leq M(\alpha(b)-\alpha(a)).
  5. If fR(β)f\in \mathscr{R}(\beta) on [a,b][a,b], then abf(x)d(α+β)=abf(x)dα+abf(x)dβ\int_a^b f(x) d(\alpha+\beta) = \int_a^b f(x) d\alpha + \int_a^b f(x) d\beta.

Theorem 6.13

If f,gR(α)f,g\in \mathscr{R}(\alpha) on [a,b][a,b], then

  1. fgR(α)fg\in \mathscr{R}(\alpha) on [a,b][a,b]
  2. fR(α)|f|\in \mathscr{R}(\alpha) on [a,b][a,b] and abf(x)dα(x)abf(x)dα(x)\left|\int_a^b f(x) d\alpha(x)\right| \leq \int_a^b |f(x)| d\alpha(x)

Key: (1), use Theorem 6.12, 6.11 to build up fgfg from (f+g)2f2g2(f+g)^2-f^2-g^2. (2), take ϕ(x)=x\phi(x) = |x| in Theorem 6.11.

Theorem 6.14

Integration over indicator functions:

If a<s<ba<s<b, ff is bounded on [a,b][a,b], and ff is continuous at ss, and α(x)=I(xs)\alpha(x)=I(x-s), then

abf(x)dα(x)=f(s)\int_a^b f(x) d\alpha(x) = f(s)

Key: Note the max difference can be made only occurs at ss.

Theorem 6.15

Integration over step functions:

If α(x)=i=1nciI(xxi)\alpha(x) = \sum_{i=1}^{n} c_i I(x-x_i) for x[a,b]x\in [a,b], then

abf(x)dα(x)=i=1ncif(xi)\int_a^b f(x) d\alpha(x) = \sum_{i=1}^{n} c_i f(x_i)

Theorem 6.21

Fundamental theorem of calculus:

Let fR(α)f\in \mathscr{R}(\alpha) on [a,b][a,b], and F(x)=axf(t)dα(t)F(x) = \int_a^x f(t) d\alpha(t). Then

  1. FF is continuous on [a,b][a,b]
  2. If ff is continuous at x[a,b]x\in [a,b], then FF is differentiable at xx and F(x)=f(x)F'(x) = f(x)

Chapter 7: Sequence and Series of Functions

Example of non-Riemann integrable function

limmlimn(cos(m!πx))2n={1xQ0xQ\lim_{m\to \infty} \lim_{n\to \infty} (\cos(m!\pi x))^{2n}=\begin{cases} 1 & x\in \mathbb{Q} \\ 0 & x\notin \mathbb{Q} \end{cases}

This function is everywhere discontinuous and not Riemann integrable.

Uniform Convergence

Definition 7.7

A sequence of functions {fn}\{f_n\} converges uniformly to ff on EE if for every ϵ>0\epsilon > 0, there exists a positive integer NN such that

fn(x)f(x)<ϵ for all xE and nN|f_n(x) - f(x)| < \epsilon \text{ for all } x\in E \text{ and } n\geq N

If EE is a point, then that’s the common definition of convergence.

If we have uniform convergence, then we can swap the order of limits.

Theorem 7.16

If {fn}R(α)\{f_n\}\in \mathscr{R}(\alpha) on [a,b][a,b], and {fn}\{f_n\} converges uniformly to ff on [a,b][a,b], then

abf(x)dα(x)=limnabfn(x)dα(x)\int_a^b f(x) d\alpha(x) = \lim_{n\to \infty} \int_a^b f_n(x) d\alpha(x)

Key: Use the definition of uniform convergence to bound the difference between the integral of the limit and the limit of the integral. ab(ffn)dαffnabdα=ffn(α(b)α(a))\int_a^b (f-f_n)d\alpha \leq |f-f_n| \int_a^b d\alpha = |f-f_n| (\alpha(b)-\alpha(a)).

Last updated on