Skip to Content
Math4111Introduction to Real Analysis (Lecture 4)

Lecture 4

Review

  1. Let FF be a field. Let a,b,c,...,zFa,b,c,...,z\in F . Using he field axioms, simplify

    (xa)(xb)(xc)...(xz)(x-a)(x-b)(x-c)...(x-z)

    xFx\in F, it must be at least one 00 in the product…

  2. Suppose A,BRA,B\subset\mathbb{R}. Suppose AA and BB are nonempty and bounded above,ABA\subset B. WHat can you say about supA\sup A and supB\sup B? Please justify.

    xA,xB.sup Asup B\forall x\in A, x\in B. sup\ A\leq sup\ B

    Any UB of BB is also an UB of AA.

    sup Bsup\ B is an UB of BB by def sup Bsup\ B is an UB of AA

Continue

Archimedean property

(Archimedean property) If x,yRx,y\in \mathbb{R} and x>0x>0, then nN\exists n\in \mathbb{N} such that nx>ynx>y.

Proof

Suppose the property is false, then x,yR\exist x,y\in \mathbb{R} with x>0x>0 such that vN\forall v\in \mathbb{N}, nx\leq y$

Let A={nx:nN}A=\{nx:n\in\mathbb{N}\}. Then AϕA\neq\phi (Since xAx\in A) and AA is bounded above by yy. Since R\mathbb{R} has LUBP, sup Asup\ A exists. Let α=supA\alpha=\sup A.

x>0    αx<αx>0\implies \alpha-x<\alpha, αx\alpha-x is not an upper bound of AA. (Since α\alpha is the LUB of AA)     mN\implies \exist m\in \mathbb{N} such that mx>αxmx>\alpha-x by definition of AA.

This implies (m+1)x>α(m+1)x>\alpha

Since (m+1)xα(m+1)x\in \alpha, this contradicts the fact that α\alpha is an upper bound of AA.

Q\mathbb{Q} is dense in R\mathbb{R}

Q\mathbb{Q} is dense in R\mathbb{R} if x,yRx,y\in \mathbb{R} and x<yx<y, then pQ\exists p\in \mathbb{Q} such that x<p<yx<p<y.

Some thoughts:

x<mn<y    nx<m<nyx<\frac{m}{n}<y\iff nx<m<ny

Proof

Let x,yRx,y\in\mathbb{R}, with x<yx<y. We’ll find nN,mZn\in \mathbb{N},\mathbb{m}\in \mathbb{Z} such that nx<m<nynx<m<ny.

By Archimedean property, nN\exist n\in \mathbb{N} such that n(yx)>1n(y-x)>1, and m1N\exist m_1\in \mathbb{N} such that m11>nxm_1\cdot 1>nx, m2N\exist m_2\in \mathbb{N} such that m21>nxm_2\cdot 1>-nx.

So m2<nx<m1-m_2<nx<m_1. Thus mZ\exist m\in \mathbb{Z} such that m1nx<mm-1\leq nx<m (Here we use a property of Z\mathbb{Z}) We have ny>1+nx1+(m1)=mny>1+nx\geq 1+(m-1)=m

2R\sqrt{2}\in \mathbb{R}, (xnR)(\sqrt[n]{x}\in\mathbb{R})

Notation R>0\mathbb{R}_{>0}= the set of positive numbers.

Theorem 1.21

xR>0,nN,\forall x\in \mathbb{R}_{>0},\forall n\in \mathbb{N},\exist unique yR>0y\in \mathbb{R}_{>0} such that yn=xy^n=x.

(Because of this Theorem we can define x1/x=yx^{1/x}=y and x=y\sqrt{x}=y)

Proof:

We cna assume n2n\geq 2 (For n=1,y=xn=1,y=x)

Step 1 (uniqueness): If 0<y1<y20<y_1<y_2, then y1n<y2ny_1^n<y_2^n (by properties of ordered field)

Step 2 (existence): Let E={tR>0:tn<x}E=\{t\in \mathbb{R}_{>0}: t^n<x\} We want to let y=sup Ey=sup\ E, but to do this we need to check 2 things.

  1. To show EϕE\neq \phi:

    If x1x\geq 1, then 1/2E1/2\in E.

    If x<1x<1, then xEx\in E.

  2. To show EE is bounded above. We need to find an upper bound.

    If x1x\geq 1, then xEx\in E

    If x<1x<1, then 1E1 \in E.

So we can let y=sup Ey=sup\ E

Step 2b (ynxy^n\geq x) Suppose for contradiction yn<xy^n<x.

Thoughts: If we can find h>0h>0 such that (y+h)n<x(y+h)^n<x, then y+hEy+h\in E. This would contradict the facts yy is an upper bound of EE.

(y+h)n=yn+nyn1h+more terms(y+h)^n=y^n+ny^{n-1}h+{more\ terms}

We want nyn1h+more terms<xynny^{n-1}h+{more\ terms}<x-y^n

Observe: If 0<a<b0<a<b, then

bnanba=bn1+bn2a+...+an1bn1+bn2b+...+bn1=nbn1\frac{b^n-a^n}{b-a}=b^{n-1}+b^{n-2}a+...+a^{n-1}\leq b^{n-1}+b^{n-2}b+...+b^{n-1}=nb^{n-1}
Last updated on