Skip to Content
Math4111Introduction to Real Analysis (Lecture 25)

Lecture 25

Review

Are the following statements true or false? You do not need to give a rigorous proof.

  1. NN\exists N\in \mathbb{N}, nN\forall n\geq N, (12)n<0.001\left(\frac{1}{2}\right)^n < 0.001
    • True, let N=10N = 10
  2. ϵ>0\forall \epsilon > 0, NN\exists N\in \mathbb{N}, nN\forall n\geq N, (12)n<ϵ\left(\frac{1}{2}\right)^n < \epsilon
    • True, let N=log12ϵN = \lceil \log_{\frac{1}{2}} \epsilon \rceil
  3. x[0,1)\forall x\in [0, 1), ϵ>0\forall \epsilon > 0, NN\exists N\in \mathbb{N}, nN\forall n\geq N, xn<ϵx^n < \epsilon
    • True, let N=logxϵN = \lceil \log_x \epsilon \rceil
  4. ϵ>0\forall \epsilon > 0, NN\exists N\in \mathbb{N}, nN\forall n\geq N, x[0,1)\forall x\in [0, 1), xn<ϵx^n < \epsilon
    • False, xx can be arbitrarily close to 1
  5. ϵ>0\forall \epsilon > 0, x[0,12]\forall x\in \left[0, \frac{1}{2}\right], NN\exists N\in \mathbb{N}, nN\forall n\geq N, xn<ϵx^n < \epsilon
    • True, let N=log12ϵN = \lceil \log_{\frac{1}{2}} \epsilon \rceil

New Materials

Sequences and series of functions

Definition 7.1

Let (fn)(f_n) be a sequence of functions ERE\to \mathbb{R}. Let f:ERf:E\to \mathbb{R} be a function. We say (fn)(f_n) converges pointwise to ff if xE\forall x\in E, limnfn(x)=f(x)\lim_{n\to \infty} f_n(x) = f(x).

i.e. xE\forall x\in E, ϵ>0\forall \epsilon > 0, NN\exists N\in \mathbb{N}, nN\forall n\geq N, fn(x)f(x)<ϵ|f_n(x) - f(x)| < \epsilon.

Example:

The sequence from the warm up exercise converges pointwise to f(x)={0x[0,1)1 otherwisef(x) = \begin{cases} 0 & x\in [0, 1) \\ 1 \text{ otherwise} \end{cases}.

To check if a series of functions converges pointwise, we can take the limit of the series as nn\to \infty.

Example:

Let gn(x):RRg_n(x):\mathbb{R}\to \mathbb{R} be defined by gn(x)=k=0nx2(1+x2)ng_n(x) = \sum_{k=0}^{n} \frac{x^2}{(1+x^2)^n}.

gn(x)=k=0n(x2(1+x2)n)g_n(x) = \sum_{k=0}^{n} \left(\frac{x^2}{(1+x^2)^n}\right)

And this is a geometric series with first term x21+x2\frac{x^2}{1+x^2} and common ratio x21+x2\frac{x^2}{1+x^2}.

Then (gn)\left(g_n\right) converges pointwise to g(x)={0x=01+x2otherwiseg(x) =\begin{cases} 0 & x = 0 \\ 1+x^2 & \text{otherwise} \end{cases}.

This example shows that pointwise convergence does not preserve continuity. But if (fn)(f_n) converges uniformly to ff, then ff is continuous.

Definition 7.7

Let (fn)(f_n) be a sequence of functions ERE\to \mathbb{R}. We say (fn)(f_n) converges uniformly to ff if ϵ>0\forall \epsilon > 0, NN\exists N\in \mathbb{N}, nN\forall n\geq N, xE\forall x\in E, fn(x)f(x)<ϵ|f_n(x) - f(x)| < \epsilon.

i.e. ϵ>0\forall \epsilon > 0, NN\exists N\in \mathbb{N}, such that nN\forall n\geq N, xE\forall x\in E, fn(x)f(x)<ϵ|f_n(x) - f(x)| < \epsilon.

fnf_n must always be within [fϵ,f+ϵ][f-\epsilon, f+\epsilon] for all nNn\geq N.

Example:

Let fn(x)=1nsin(n2x)f_n(x) = \frac{1}{n}\sin(n^2 x).

Ideas of proof:

Given ϵ>0\epsilon > 0, let N=1ϵN = \lceil \frac{1}{\epsilon} \rceil. (This choice of NN does not depend on xx.)

Then nN\forall n\geq N, xR\forall x\in \mathbb{R}, 1nsin(n2x)<ϵ|\frac{1}{n}\sin(n^2 x)| < \epsilon.

Example:

Let fn:[0,1]Rf_n:[0, 1]\to \mathbb{R}, fn(x)=xnf_n(x) = x^n.

Then (fn)(f_n) does not converge uniformly to f(x)={0x<11x=0f(x) = \begin{cases} 0 & x<1 \\ 1 & x = 0 \end{cases}.

fnf_n does not lie in the region [0,1][0, 1] for all nn.

Theorem 7.12 (Corollary of Theorem 7.11) (Uniform limit theorem)

Let (fn)(f_n) be a sequence of continuous functions ERE\to \mathbb{R}. If (fn)(f_n) converges uniformly to ff on EE, then ff is continuous.

Proof:

Suppose fnff_n\to f uniformly and n\forall n, fnf_n is continuous.

Let pEp\in E and ϵ>0\epsilon > 0.

Since fnff_n\to f uniformly, NN\exists N\in \mathbb{N}, nN\forall n\geq N, xE,fn(x)f(x)<ϵ\forall x\in E, |f_n(x) - f(x)| < \epsilon.

Since fNf_N is continuous at pp, δ>0\exists \delta > 0, such that xE\forall x\in E, if fN(x)fN(p)<ϵ|f_N(x) - f_N(p)| < \epsilon.

Suppose xBδ(p)x\in B_\delta(p). Then

f(x)f(p)=f(x)fN(x)+fN(x)fN(p)+fN(p)f(p)f(x)fN(x)+fN(x)fN(p)+fN(p)f(p)<3ϵ\begin{aligned} |f(x) - f(p)| &= |f(x) - f_N(x) + f_N(x) - f_N(p) + f_N(p) - f(p)| \\ &\leq |f(x) - f_N(x)| + |f_N(x) - f_N(p)| + |f_N(p) - f(p)| \\ &< 3\epsilon \end{aligned}

The ϵ\epsilon bound would not hold if we only had pointwise convergence.

fN(x)fN(p)<3ϵ|f_N(x) - f_N(p)| < 3\epsilon.

QED

Recall: If (sn)(s_n) is a sequence in R\mathbb{R}, then (sn)(s_n) converges to ss if and only if it is Cauchy.
i.e. ϵ>0\forall \epsilon > 0, NN\exists N\in \mathbb{N}, n,mN\forall n, m\geq N, snsm<ϵ|s_n - s_m| < \epsilon.

Theorem 7.9 (Cauchy criterion for uniform convergence)

Let (fn)(f_n) be a sequence of functions ERE\to \mathbb{R}. (fn)(f_n) converges uniformly to ff on EE if and only if (fn)(f_n) is uniformly Cauchy.

i.e. ϵ>0\forall \epsilon > 0, NN\exists N\in \mathbb{N}, n,mN\forall n, m\geq N, xE\forall x\in E, fn(x)fm(x)<ϵ|f_n(x) - f_m(x)| < \epsilon.

Proof:

Exercise.

Theorem 7.10 (Weierstrass M-test)

Let (fn)(f_n) be a sequence of functions ERE\to \mathbb{R} (or C\mathbb{C}). Suppose

  • n\forall n, MnR0\exists M_n\in \mathbb{R}_{\geq 0}, such that xE\forall x\in E, fn(x)Mn|f_n(x)| \leq M_n.
  • n=1Mn\sum_{n=1}^{\infty} M_n converges.

Then n=1fn(x)\sum_{n=1}^{\infty} f_n(x) converges uniformly on EE.

i.e. The sequence of partial sums sn(x)=k=1nfk(x)s_n(x) = \sum_{k=1}^{n} f_k(x) converges uniformly on EE.

Remark:

The proof is nearly identical to the proof of the comparison test in Chapter 3.

Proof:

By Theorem 7.8, it’s enough to show that (sn)(s_n) is uniformly Cauchy.

i.e. ϵ>0\forall \epsilon > 0, NN\exists N\in \mathbb{N}, mnN\forall m\geq n\geq N, xE\forall x\in E, k=nmfk(x)<ϵ|\sum_{k=n}^{m} f_k(x)| < \epsilon.

Let ϵ>0\epsilon > 0. Since n=1Mn\sum_{n=1}^{\infty} M_n converges, NN\exists N\in \mathbb{N}, mnN\forall m\geq n\geq N, k=nmMk<ϵ\sum_{k=n}^{m} M_k < \epsilon.

Suppose mnNm\geq n\geq N and xEx\in E.

k=nmfk(x)k=nmfk(x)k=nmMk<ϵ\begin{aligned} |\sum_{k=n}^{m} f_k(x)| &\leq \sum_{k=n}^{m} |f_k(x)| \\ &\leq \sum_{k=n}^{m} M_k \\ &< \epsilon \end{aligned}

QED

Example:

Let fn(x)=n=012ncos(3nx)f_n(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \cos(3^n x).

12ncos(3nx)12n=Mn\left|\frac{1}{2^n} \cos(3^n x)\right| \leq \frac{1}{2^n}=M_n

By Weierstrass M-test, fn(x)f_n(x) converges uniformly on R\mathbb{R}.

By Theorem 7.12, f(x)=n=012ncos(3nx)f(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \cos(3^n x) is continuous on R\mathbb{R}.

Fun fact: f(x)f(x) is not differentiable at any xRx\in \mathbb{R}.

Last updated on