Skip to Content
Math4111Introduction to Real Analysis (Lecture 21)

Lecture 21

Review

Recall the alternating series test from calculus: “Suppose (an)n=1(a_n)^\infty_{n=1} is a sequence satisfies the following conditions:

  1. The sequence is nonnegative. (For all nNn\in \mathbb{N}, an0a_n\geq 0.)
  2. The sequence is decreasing. (a1a2a3a_1\geq a_2\geq a_3\geq \cdots)
  3. limnan=0\lim_{n\to\infty}a_n=0.

Then n=1(1)n+1an\sum_{n=1}^\infty (-1)^{n+1}a_n converges.”

Exercise: Show that the statement above is false if we remove the second condition.

[Hint: Use the fact that n=11n\sum_{n=1}^\infty \frac{1}{n} diverges.]

Let the sequence ana_n be defined as an=1n,an+1=0a_n=\frac{1}{n},a_{n+1}=0 for all nNn\in \mathbb{N}. This sequence satisfies the 1,3 but not the 2.

And the harmonic series is not convergent.

New Material

Other tests for convergence of series

Recall the integration by parts formula:

Let A(t),a(t),b(t)A(t),a(t),b(t) be functions of tt and A(t)=a(t)A'(t)=a(t).

Then

pqa(t)b(t)dt=pqb(t)A(t)dt=b(t)A(t)pqpqA(t)b(t)dt\begin{aligned} \int_p^q a(t)b(t)\,dt&=\int_p^q b(t)A'(t)\,dt\\ &=\left.b(t)A(t)\right|_p^q-\int_p^q A(t)b'(t)\,dt \end{aligned}

Theorem 3.41 Summation by parts

Let an,bna_n,b_n be sequences.

Let A(n)=k=1nakA(n)=\sum_{k=1}^n a_k. (A1=0A_{-1}=0). If 0pq0\leq p\leq q, then

n=pqanbn=AqbqAp1bpn=pq1An(bnbn+1)\sum_{n=p}^q a_nb_n=A_q b_q-A_{p-1}b_p-\sum_{n=p}^{q-1}A_n (b_n-b_{n+1})

Proof:

n=pqanbn=n=pq(AnAn1)bn=n=pqAnbnn=pqAn1bn=n=pqAnbnn=p1q1Anbn+1=AqbqAp1bpn=pq1Anbnn=pq1Anbn+1=AqbqAp1bpn=pq1An(bnbn+1)\begin{aligned} \sum_{n=p}^q a_nb_n&=\sum_{n=p}^q (A_n-A_{n-1})b_n\\ &=\sum_{n=p}^q A_nb_n-\sum_{n=p}^q A_{n-1}b_n\\ &=\sum_{n=p}^q A_nb_n-\sum_{n=p-1}^{q-1}A_n b_{n+1}\\ &=A_qb_q-A_{p-1}b_p-\sum_{n=p}^{q-1} A_nb_n-\sum_{n=p}^{q-1} A_n b_{n+1}\\ &=A_qb_q-A_{p-1}b_p-\sum_{n=p}^{q-1} A_n (b_n-b_{n+1}) \end{aligned}

QED

Theorem 3.42 (Dirichlet’s test)

Suppose

(a) the partial sum AnA_n of an\sum a_n form a bounded sequence.
(b) b0b1b2b_0\geq b_1\geq b_2\geq \cdots (non-increasing)
(c) limnbn=0\lim_{n\to\infty}b_n=0.

Then anbn\sum a_nb_n converges.

Proof:

By Cauchy criterion, it’s enough to prove

ϵ>0,NN\forall \epsilon >0, \exists N\in \mathbb{N} such that for all pqNp\geq q\geq N,

n=pqanbn<ϵ\left|\sum_{n=p}^q a_nb_n\right|<\epsilon

By the partial sum AnA_n of an\sum a_n form a bounded sequence. Let AnM\left|A_n\right|\leq M for all nNn\in \mathbb{N}.

n=pqanbn=AqbqAp1bpn=pq1An(bnbn+1)Aqbq+Ap1bp+n=pq1An(bnbn+1)Mbq+Mbp+n=pq1M(bnbn+1)=Mbq+Mbp+Mn=pq1(bnbn+1)=Mbq+Mbp+M(bpbq)=2Mbp\begin{aligned} \left|\sum_{n=p}^q a_nb_n\right|&=\left|A_qb_q-A_{p-1}b_p-\sum_{n=p}^{q-1}A_n (b_n-b_{n+1})\right|\\ &\leq |A_qb_q|+|A_{p-1}b_p|+\sum_{n=p}^{q-1}|A_n (b_n-b_{n+1})|\\ &\leq M|b_q|+M|b_p|+\sum_{n=p}^{q-1}M(b_n-b_{n+1})\\ &=M|b_q|+M|b_p|+M\sum_{n=p}^{q-1}(b_n-b_{n+1})\\ &=M|b_q|+M|b_p|+M(b_p-b_q)\\ &=2M|b_p| \end{aligned}

Then we let ϵ>0\epsilon >0 be given. Since bn0b_n\to 0, there exists NNN\in \mathbb{N} such that for all nNn\geq N, bn<ϵ2M|b_n|<\frac{\epsilon}{2M}.

If qpNq\geq p\geq N, then

n=pqanbn2Mbp<ϵ\left|\sum_{n=p}^q a_nb_n\right|\leq 2M|b_p|<\epsilon

So anbn\sum a_nb_n converges.

QED

Theorem 3.43 (Alternating series test)

Let (bn)n=1(b_n)^\infty_{n=1} be a sequence such that:

(a) b1b2b3b_1\geq b_2\geq b_3\geq \cdots (non-increasing) (b) limnbn=0\lim_{n\to\infty}b_n=0

Then n=1(1)n+1bn\sum_{n=1}^\infty (-1)^{n+1}b_n converges.

Proof:

Let an=(1)n+1a_n=(-1)^{n+1}

An=k=1nak=1A_n=\sum_{k=1}^n a_k=1 if nn is odd, 00 if nn is even.

So An1|A_n|\leq 1 for all nNn\in \mathbb{N}.

By Theorem 3.42, n=1anbn\sum_{n=1}^\infty a_n b_n converges.

QED

Example:

Consider the power series n=0znn\sum_{n=0}^\infty \frac{z^n}{n}.

The radius of convergence is 11.

We claim that the series converges for all zCz\in \mathbb{C} with z=1|z|=1 and z1z\neq 1.

Theorem 3.44 Abel’s test

Let (bn)n=0(b_n)^\infty_{n=0} be a sequence such that:

(a) b0b1b2b_0\geq b_1\geq b_2\geq \cdots (non-increasing) (b) limnbn=0\lim_{n\to\infty}b_n=0

Then if z=1|z|=1 and z1z\neq 1, n=0bnzn\sum_{n=0}^\infty b_nz^n converges.

Proof:

Fix zCz\in \mathbb{C} with z=1|z|=1 and z1z\neq 1.

Let an=zna_n=z^n.

Then An=k=0nzk=1zn+11zA_n=\sum_{k=0}^n z^k=\frac{1-z^{n+1}}{1-z}._

An1zn+11z|A_n|\leq \frac{|1-z^{n+1}|}{|1-z|} for all nNn\in \mathbb{N}.

By triangle inequality, 1zn+11+zn+1=1+zn+1|1-z^{n+1}|\leq |1|+|z^{n+1}|=1+|z^{n+1}|.

And since z=1|z|=1, zn+1=zn+1=1|z^{n+1}|=|z|^{n+1}=1.

So 1zn+12|1-z^{n+1}|\leq 2.

So An21z|A_n|\leq \frac{2}{|1-z|} for all nNn\in \mathbb{N}.

By Dirichlet’s test, n=0bnzn\sum_{n=0}^\infty b_nz^n

QED

Absolute convergence

The series n=0an\sum_{n=0}^\infty a_n is said to converge absolutely if n=0an\sum_{n=0}^\infty |a_n| converges.

If n=0an\sum_{n=0}^\infty a_n converges but does not converge absolutely, then n=0an\sum_{n=0}^\infty a_n is said to converge conditionally.

Absolute convergence are nice but conditionally convergent series are not.

Theorem 3.45 (Absolute convergence)

If n=0an\sum_{n=0}^\infty a_n converges absolutely, then n=0an\sum_{n=0}^\infty a_n converges.

Proof:

Use comparison test.

n=0ann=0an\sum_{n=0}^\infty |a_n|\geq \sum_{n=0}^\infty a_n

QED

Rearrangement of series:

Let f:NNf:\mathbb{N}\to \mathbb{N} be a bijection.

If n=0an\sum_{n=0}^\infty a_n is a sequence and bn=af(n)b_n=a_{f(n)}, then (bn)n=0(b_n)^\infty_{n=0} is a rearrangement of (an)n=0(a_n)^\infty_{n=0}.

If n=0an\sum_{n=0}^\infty a_n converges absolutely, then any rearrangement of n=0an\sum_{n=0}^\infty a_n converges to the same sum.

Example:

an=(1)n+1na_n=\frac{(-1)^{n+1}}{n}. bn=af(n)b_n=a_{f(n)}.

n123456789
f(n)f(n)12436851012
bnb_n1-1/2-1/41/3-1/6-1/81/5-1/10-1/12
n=1an=1112+1314+=log2\sum_{n=1}^\infty a_n=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\log 2 n=1bn=11214+131618+15110112+=(112)14+(1316)18+(15110)112+=1214+1618+110112+=12(112+1314+)=12log2\begin{aligned} \sum_{n=1}^\infty b_n&=1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\cdots\\ &=\left(1-\frac{1}{2}\right)-\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{6}\right)-\frac{1}{8}+\left(\frac{1}{5}-\frac{1}{10}\right)-\frac{1}{12}+\cdots\\ &=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\frac{1}{12}+\cdots\\ &=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots\right)\\ &=\frac{1}{2}\log 2 \end{aligned}

You cannot always rearrange series.

But, if n=0an\sum_{n=0}^\infty a_n converges absolutely, then you can rearrange the series.

Theorem 3.55

Let (an)n=0(a_n)^\infty_{n=0} be a sequence in C\mathbb{C} such that n=0an\sum_{n=0}^\infty |a_n| converges absolutely.

Then any rearrangement of n=0an\sum_{n=0}^\infty a_n converges absolutely to the same sum.

n=0an=n=0af(n)\sum_{n=0}^\infty a_n=\sum_{n=0}^\infty a_{f(n)}

Ideas of proof:

Let f:NNf:\mathbb{N}\to \mathbb{N} be a bijection.

and let bn=af(n)b_n=a_{f(n)}.

Let sn=k=0nak,tn=k=0nbk=k=0naf(k)s_n=\sum_{k=0}^n a_k,t_n=\sum_{k=0}^n b_k=\sum_{k=0}^n a_{f(k)}.

In={1,2,,n}I_n=\{1,2,\cdots,n\}.

Jn={f(1),f(2),,f(n)}J_n=\{f(1),f(2),\cdots,f(n)\}.

sntn=k=0nakk=0naf(k)=kInakkJnak=kInJnak+kJnInakkInJnak+kJnInak\begin{aligned} s_n-t_n&=\sum_{k=0}^n a_k-\sum_{k=0}^n a_{f(k)}\\ &=\sum_{k\in I_n} a_k-\sum_{k\in J_n} a_k\\ &= \sum_{k\in I_n\setminus J_n} a_k+\sum_{k\in J_n\setminus I_n} a_k\\ &\leq \sum_{k\in I_n\setminus J_n} |a_k|+\sum_{k\in J_n\setminus I_n} |a_k| \end{aligned}

Key observation:

For every nNn\in \mathbb{N}, there exists a pp such that {1,2,,n}InJn\{1,2,\cdots,n\}\subset I_n\cap J_n.

Then sntnk=N+1ak|s_n-t_n|\leq \sum_{k=N+1}^\infty |a_k|.

QED

Last updated on