Skip to Content
Math4111Exam reviewsMath 4111 Exam 3 review

Math 4111 Exam 3 review

Relations between series and topology (compactness, closure, etc.)

Limit points E={xR:r>0,Br(x)\{x}Eϕ}E'=\{x\in\mathbb{R}:\forall r>0, B_r(x)\backslash\{x\}\cap E\neq\phi\}

Closure E=EE={xR:r>0,Br(x)Eϕ}\overline{E}=E\cup E'=\{x\in\mathbb{R}:\forall r>0, B_r(x)\cap E\neq\phi\}

pnp    ϵ>0,Np_n\to p\implies \forall \epsilon>0, \exists N such that nN,pnBϵ(p)\forall n\geq N, p_n\in B_\epsilon(p)

Some interesting results

Lemma

pE    (pn)Ep\in \overline{E}\iff \exists (p_n)\subseteq E such that pnpp_n\to p

pE    (pn)E\{p}p\in E'\iff \exists (p_n)\subseteq E\backslash\{p\} such that pnpp_n\to p (you cannot choose pp in the sequence)

Bolzano-Weierstrass Theorem

Let EE be a compact set and (pn)(p_n) be a sequence in EE. Then (pnk)(pn)\exists (p_{n_k})\subseteq (p_n) such that pnkpEp_{n_k}\to p\in E.

Rudin Proof:

Rudin’s proof uses a fact from Chapter 2.

If EE is compact, and SES\subseteq E is infinite, then SS has a limit point in EE (SEϕS'\cap E\neq\phi).

Examples of Cauchy sequence that does not converge

Cauchy sequence in (X,d),ϵ>0,N(X,d),\forall \epsilon>0, \exists N such that m,nN,d(pm,pn)<ϵ\forall m,n\geq N, d(p_m,p_n)<\epsilon

Let X=QX=\mathbb{Q} and (pq)={1,1.4,1.41,1.414,1.4142,1.41421,}(p_q)=\{1,1.4,1.41,1.414,1.4142,1.41421,\dots\} The sequence is Cauchy but does not converge in Q\mathbb{Q}.

This does not hold in R\mathbb{R} because compact metric spaces are complete.

Fact: Every Cauchy sequence is bounded.

Proof that ee is irrational

e=n=01n!e=\sum_{n=0}^\infty \frac{1}{n!}

Let sn=k=0n1k!s_n=\sum_{k=0}^n \frac{1}{k!}

So esn=(k=n+11k!)<1n!ne-s_n=\left(\sum_{k=n+1}^\infty \frac{1}{k!}\right)<\frac{1}{n!n}

If ee is rational, then p,qZ\exists p,q\in\mathbb{Z} such that e=qpe=\frac{q}{p} and q!sqZq!s_q\in\mathbb{Z}, q!e=q!pqZq!e=q!\frac{p}{q}\in \mathbb{Z}, so q!(esq)Zq!(e-s_q)\in\mathbb{Z}

0<q!(esq)<1n!n0<q!(e-s_q)<\frac{1}{n!n} leads to contradiction.

lim sup\limsup and lim inf\liminf

Let (an)=(1)n(a_n)=(-1)^n

lim supan=1\limsup a_n=1 and lim infan=1\liminf a_n=-1

Let (an)a(a_n)\to a

lim supan=lim infan=a\limsup a_n=\liminf a_n=a

Facts about lim sup\limsup and lim inf\liminf

Convergence of subsequence

lim sup\limsup is the largest value that subsequence of ana_n can approach to.

lim inf\liminf is the smallest value that subsequence of ana_n can approach to.

Elements of sequence

x>s,{n:an>x}\forall x>s^*,\{n:a_n>x\} is finite. N\exists N such that nN,anx\forall n\geq N, a_n\leq x

x<s,{n:an>x}\forall x<s^*,\{n:a_n>x\} is infinite.

One example is (an)=(1)nnn+1(a_n)=(-1)^n\frac{n}{n+1}

lim supan=1\limsup a_n=1 and lim infan=1\liminf a_n=-1

So the size of set of elements of ana_n that are greater than any x<1x<1 is infinite. and the size of set of elements of ana_n that are greater than any x>1x>1 is finite.

lim sup(an+bn)lim supan+lim supbn\limsup(a_n+b_n)\leq \limsup a_n+\limsup b_n

One example for smaller than is (an)=(1)n(a_n)=(-1)^n and (bn)=(1)n+1(b_n)=(-1)^{n+1}

lim sup(an+bn)=0\limsup(a_n+b_n)=0 and lim supan+lim supbn=2\limsup a_n+\limsup b_n=2

(n,sntn\forall n,s_n\leq t_n)     lim supsnlim suptn\implies \limsup s_n\leq \limsup t_n

One example of using this theorem is (sn)=(k=1n1k!)(s_n)=\left(\sum_{k=1}^n\frac{1}{k!}\right) and (tn)=(1n+1)n(t_n)=\left(\frac{1}{n}+1\right)^n

Rearrangement of series

Will not be tested.

infinite sum is not similar to finite sum. For infinite sum, the order of terms matters. But for finite sum, the order of terms does not matter, you can rearrange the terms as you want.

Ways to prove convergence of series

n-th term test (divergence test)

If limnan0\lim_{n\to\infty}a_n\neq 0, then an\sum a_n diverges.

Definition of convergence of series (convergence and divergence test)

If an\sum a_n converges, then limnk=1nak=0\lim_{n\to\infty}\sum_{k=1}^n a_k=0.

Example: Telescoping series and geometric series.

Comparison test (convergence and divergence test (absolute convergence))

Let (an)(a_n) be a sequence in C\mathbb{C} and (cn)(c_n) be a non-negative sequence in R\mathbb{R}. Suppose n,ancn\forall n, |a_n|\leq c_n.

(a) If the series n=1cn\sum_{n=1}^{\infty}c_n converges, then the series n=1an\sum_{n=1}^{\infty}a_n converges.
(b) If the series n=1an\sum_{n=1}^{\infty}a_n diverges, then the series n=1cn\sum_{n=1}^{\infty}c_n diverges.

Ratio test (convergence and divergence test (absolute convergence))

an+1anα    anαn \left|\frac{a_{n+1}}{a_n}\right| \leq \alpha \implies |a_n|\leq \alpha^n

Given a series n=0an\sum_{n=0}^{\infty} a_n, anC\{0}a_n\in\mathbb{C}\backslash\{0\}.

Then

(a) If lim supnan+1an<1\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1, then n=0an\sum_{n=0}^{\infty} a_n converges.
(b) If an+1an1\left|\frac{a_{n+1}}{a_n}\right| \geq 1 for all nn0n\geq n_0 for some n0Nn_0\in\mathbb{N}, then n=0an\sum_{n=0}^{\infty} a_n diverges.

Root test (convergence and divergence test (absolute convergence))

annα    anαn \sqrt[n]{|a_n|} \leq \alpha \implies |a_n|\leq \alpha^n

Given a series n=0an\sum_{n=0}^{\infty} a_n, put α=lim supnann\alpha = \limsup_{n\to\infty} \sqrt[n]{|a_n|}.

Then

(a) If α<1\alpha < 1, then n=0an\sum_{n=0}^{\infty} a_n converges.
(b) If α>1\alpha > 1, then n=0an\sum_{n=0}^{\infty} a_n diverges.
(c) If α=1\alpha = 1, the test gives no information

Cauchy criterion

Geometric series

P-series

(a) n=01n\sum_{n=0}^{\infty}\frac{1}{n} diverges.
(b) n=01n2\sum_{n=0}^{\infty}\frac{1}{n^2} converges.

Cauchy condensation test (convergence test)

Suppose (an)(a_n) is a non-negative sequence. The series n=1an\sum_{n=1}^{\infty}a_n converges if and only if the series k=02ka2k\sum_{k=0}^{\infty}2^ka_{2^k} converges.

Dirichlet test (convergence test)

Suppose

(a) the partial sum AnA_n of an\sum a_n form a bounded sequence.
(b) b0b1b2b_0\geq b_1\geq b_2\geq \cdots (non-increasing)
(c) limnbn=0\lim_{n\to\infty}b_n=0.

Then anbn\sum a_nb_n converges.

Example: n=1(1)n+1n\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} converges.

Abel’s test (convergence test)

Let (bn)n=0(b_n)^\infty_{n=0} be a sequence such that:

(a) b0b1b2b_0\geq b_1\geq b_2\geq \cdots (non-increasing) (b) limnbn=0\lim_{n\to\infty}b_n=0

Then if z=1|z|=1 and z1z\neq 1, n=0bnzn\sum_{n=0}^\infty b_nz^n converges.

Last updated on