Skip to Content
Math401Math 401, Summer 2025: Freiwald research project notesMath 401, Paper 1, Side note 2: Page's lemma

Math 401 Paper 1, Side note 2: Page’s lemma

The page’s lemma is a fundamental result in quantum information theory that provides a lower bound on the probability of error in a quantum channel.

Basic definitions

SO(n)SO(n)

The special orthogonal group SO(n)SO(n) is the set of all distance preserving linear transformations on Rn\mathbb{R}^n.

It is the group of all n×nn\times n orthogonal matrices (AA=InA^\top A=I_n) on Rn\mathbb{R}^n with determinant 11.

SO(n)={ARn×n:AA=In,det(A)=1}SO(n)=\{A\in \mathbb{R}^{n\times n}: A^\top A=I_n, \det(A)=1\}

Extensions

In The random Matrix Theory of the Classical Compact groups , the author gives a more general definition of the Haar measure on the compact group SO(n)SO(n),

O(n)O(n) (the group of all n×nn\times n orthogonal matrices over R\mathbb{R}),

O(n)={ARn×n:AA=AA=In}O(n)=\{A\in \mathbb{R}^{n\times n}: AA^\top=A^\top A=I_n\}

U(n)U(n) (the group of all n×nn\times n unitary matrices over C\mathbb{C}),

U(n)={ACn×n:AA=AA=In}U(n)=\{A\in \mathbb{C}^{n\times n}: A^*A=AA^*=I_n\}

Recall that AA^* is the complex conjugate transpose of AA.

SU(n)SU(n) (the group of all n×nn\times n unitary matrices over C\mathbb{C} with determinant 11),

SU(n)={ACn×n:AA=AA=In,det(A)=1}SU(n)=\{A\in \mathbb{C}^{n\times n}: A^*A=AA^*=I_n, \det(A)=1\}

Sp(2n)Sp(2n) (the group of all 2n×2n2n\times 2n symplectic matrices over C\mathbb{C}),

Sp(2n)={UU(2n):UJU=UJU=J}Sp(2n)=\{U\in U(2n): U^\top J U=UJU^\top=J\}

where J=(0InIn0)J=\begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} is the standard symplectic matrix.

Haar measure

Let (SO(n),,μ)(SO(n), \| \cdot \|, \mu) be a metric measure space where \| \cdot \| is the Hilbert-Schmidt norm  and μ\mu is the measure function.

The Haar measure on SO(n)SO(n) is the unique probability measure that is invariant under the action of SO(n)SO(n) on itself.

That is also called translation-invariant.

That is, fixing BSO(n)B\in SO(n), ASO(n)\forall A\in SO(n), μ(AB)=μ(BA)=μ(B)\mu(A\cdot B)=\mu(B\cdot A)=\mu(B).

The Haar measure is the unique probability measure that is invariant under the action of SO(n)SO(n) on itself.

The existence and uniqueness of the Haar measure is a theorem in compact lie group theory. For this research topic, we will not prove it.

Random sampling on the CPn\mathbb{C}P^n

Note that the space of pure state in bipartite system

Statement

Choosing a random pure quantum state ρ\rho from the bi-partite pure state space HAHB\mathcal{H}_A\otimes\mathcal{H}_B with the uniform distribution, the expected entropy of the reduced state ρA\rho_A is:

E[H(ρA)]lndA12ln2dAdB\mathbb{E}[H(\rho_A)]\geq \ln d_A -\frac{1}{2\ln 2} \frac{d_A}{d_B}

Page’s conjecture

A quantum system ABAB with the Hilbert space dimension mnmn in a pure state ρAB\rho_{AB} has entropy 00 but the entropy of the reduced state ρA\rho_A, assume mnm\leq n, then entropy of the two subsystem AA and BB is greater than 00.

unless AA and BB are separable.

In the original paper, the entropy of the average state taken under the unitary invariant Haar measure is:

Sm,n=k=n+1mn1km12nlnmm2nS_{m,n}=\sum_{k=n+1}^{mn}\frac{1}{k}-\frac{m-1}{2n}\simeq \ln m-\frac{m}{2n}

References

Last updated on