Skip to Content
CSE559AComputer Vision (Lecture 26)

CSE559A Lecture 26

Continue on Geometry and Multiple Views

The Essential and Fundamental Matrices

Math of the epipolar constraint: Calibrated case

Recall Epipolar Geometry

Epipolar Geometry Configuration

Epipolar constraint:

If we set the config for the first camera as the world origin and [I0](y1)=x[I|0]\begin{pmatrix}y\\1\end{pmatrix}=x, and [Rt](y1)=x[R|t]\begin{pmatrix}y\\1\end{pmatrix}=x', then

Notice that x[t×(Ry)]=0x'\cdot [t\times (Ry)]=0

xEx1=0x'^\top E x_1 = 0

We denote the constraint defined by the Essential Matrix as EE.

ExE x is the epipolar line associated with xx (l=Exl'=Ex)

ExE^\top x' is the epipolar line associated with xx' (l=Exl=E^\top x')

Ee=0E e=0 and Ee=0E^\top e'=0 (xx and xx' don’t matter)

EE is singular (rank 2) and have five degrees of freedom.

Epipolar constraint: Uncalibrated case

If the calibration matrices KK and KK' are unknown, we can write the epipolar constraint in terms of unknown normalized coordinates:

xnormExnorm=0x'^\top_{norm} E x_{norm} = 0

where xnorm=K1xx_{norm}=K^{-1} x, xnorm=K1xx'_{norm}=K'^{-1} x'

xnormExnorm=0    xnormFx=0x'^\top_{norm} E x_{norm} = 0\implies x'^\top_{norm} Fx=0

where F=K1EK1F=K'^{-1}EK^{-1} is the Fundamental Matrix.

(x,y,1)[f11f12f13f21f22f23f31f32f33](xy1)=0(x',y',1)\begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}\begin{pmatrix} x\\y\\1 \end{pmatrix}=0

Properties of FF:

FxF x is the epipolar line associated with xx (l=Fxl'=F x)

FxF^\top x' is the epipolar line associated with xx' (l=Fxl=F^\top x')

Fe=0F e=0 and Fe=0F^\top e'=0

FF is singular (rank two) and has seven degrees of freedom

Estimating the fundamental matrix

Given: correspondences x=(x,y,1)x=(x,y,1)^\top and x=(x,y,1)x'=(x',y',1)^\top

Constraint: xFx=0x'^\top F x=0

(x,y,1)[f11f12f13f21f22f23f31f32f33](xy1)=0(x',y',1)\begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}\begin{pmatrix} x\\y\\1 \end{pmatrix}=0

Each pair of correspondences gives one equation (one constraint)

At least 8 pairs of correspondences are needed to solve for the 9 elements of FF (The eight point algorithm)

We know FF needs to be singular/rank 2. How do we force it to be singular?

Solution: take SVD of the initial estimate and throw out the smallest singular value

F=U[σ100σ200]VF=U\begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{bmatrix}V^\top

Structure from Motion

Not always uniquely solvable.

If we scale the entire scene by some factor kk and, at the same time, scale the camera matrices by the factor of 1/k1/k, the projections of the scene points remain exactly the same: xPX=(1/kP)(kX)x\cong PX =(1/k P)(kX)

Without a reference measurement, it is impossible to recover the absolute scale of the scene!

In general, if we transform the scene using a transformation QQ and apply the inverse transformation to the camera matrices, then the image observations do not change:

xPX=(PQ1)(QX)x\cong PX =(P Q^{-1})(QX)

Types of Ambiguities

Ambiguities in projection

Affine projection : more general than orthographic

A general affine projection is a 3D-to-2D linear mapping plus translation:

P=[a11a12a13t1a21a22a23t20001]=[At01]P=\begin{bmatrix} a_{11} & a_{12} & a_{13} & t_1 \\ a_{21} & a_{22} & a_{23} & t_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}=\begin{bmatrix} A & t \\ 0^\top & 1 \end{bmatrix}

In non-homogeneous coordinates:

(xy1)=[a11a12a13a21a22a23](XYZ)+(t1t2)=AX+t\begin{pmatrix} x\\y\\1 \end{pmatrix}=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}\begin{pmatrix} X\\Y\\Z \end{pmatrix}+\begin{pmatrix} t_1\\t_2 \end{pmatrix}=AX+t

Affine Structure from Motion

Given: 𝑚 images of 𝑛 fixed 3D points such that

xij=AiXj+ti,i=1,,m,j=1,,nx_{ij}=A_iX_j+t_i, \quad i=1,\dots,m, \quad j=1,\dots,n

Problem: use the 𝑚𝑛 correspondences xijx_{ij} to estimate 𝑚 projection matrices AiA_i and translation vectors tit_i, and 𝑛 points XjX_j

The reconstruction is defined up to an arbitrary affine transformation QQ (12 degrees of freedom):

[At01][At01]Q1,(Xj1)Q(Xj1)\begin{bmatrix} A & t \\ 0^\top & 1 \end{bmatrix}\rightarrow\begin{bmatrix} A & t \\ 0^\top & 1 \end{bmatrix}Q^{-1}, \quad \begin{pmatrix}X_j\\1\end{pmatrix}\rightarrow Q\begin{pmatrix}X_j\\1\end{pmatrix}

How many constraints and unknowns for mm images and nn points?

2mn2mn constraints and 8m+3n8m + 3n unknowns

To be able to solve this problem, we must have 2mn8m+3n122mn \geq 8m+3n-12 (affine ambiguity takes away 12 dof)

E.g., for two views, we need four point correspondences

Last updated on