CSE 5313 Exam 1 review
Basic math
class PrimeField:
def __init__(self, p: int, value: int = 0):
if not utils.prime(p):
raise ValueError("p must be a prime number")
if value >= p or value < 0:
raise ValueError("value must be integers in the range [0, p)")
self.p = p
self.value = value
def field_check(func):
def wrapper(self: 'PrimeField', other: 'PrimeField') -> 'PrimeField':
if self.p != other.p:
raise ValueError("Fields must have the same prime modulus")
return func(self, other)
return wrapper
def additive_inverse(self) -> 'PrimeField':
return PrimeField(self.p, self.p - self.value)
def multiplicative_inverse(self) -> 'PrimeField':
# done by Fermat's little theorem
return PrimeField(self.p, pow(self.value, self.p - 2, self.p))
def next_value(self) -> 'PrimeField':
return self + PrimeField(self.p, 1)
@field_check
def __add__(self, other: 'PrimeField') -> 'PrimeField':
return PrimeField(self.p, (self.value + other.value) % self.p)
@field_check
def __sub__(self, other: 'PrimeField') -> 'PrimeField':
return PrimeField(self.p, (self.value - other.value) % self.p)
@field_check
def __mul__(self, other: 'PrimeField') -> 'PrimeField':
return PrimeField(self.p, (self.value * other.value) % self.p)
@field_check
def __truediv__(self, other: 'PrimeField') -> 'PrimeField':
return PrimeField(self.p, (self.value * other.multiplicative_inverse().value)%self.p)
def __pow__(self, other: int) -> 'PrimeField':
# no field check for power operation
return PrimeField(self.p, pow(self.value, other, self.p))
@field_check
def __eq__(self, other: 'PrimeField') -> bool:
return self.value == other.value
@field_check
def __ne__(self, other: 'PrimeField') -> bool:
return self.value != other.value
@field_check
def __lt__(self, other: 'PrimeField') -> bool:
return self.value < other.value
@field_check
def __le__(self, other: 'PrimeField') -> bool:
return self.value <= other.value
@field_check
def __gt__(self, other: 'PrimeField') -> bool:
return self.value > other.value
@field_check
def __ge__(self, other: 'PrimeField') -> bool:
return self.value >= other.value
def __str__(self) -> str:
return f"PrimeField({self.p}, {self.value})"For field extension.
class Polynomial():
# strict constructor
def __init__(self, p: int, coefficients: list[PrimeField]=[]):
if len(coefficients) == 0:
# no empty list is allowed
coefficients = [PrimeField(p, 0)]
if not utils.prime(p):
raise ValueError("p must be a prime number")
self.p = p
for coefficient in coefficients:
if not isinstance(coefficient, PrimeField) or coefficient.p != p:
raise ValueError("coefficients must be in the same field")
self.coefficients = coefficients
self.remove_leading_zero_coefficients()
# lazy constructor
@classmethod
def from_integers(cls, p: int, coefficients: list[int]) -> 'Polynomial':
# coefficients test
for coefficient in coefficients:
if 0 > coefficient or coefficient >= p:
raise ValueError("coefficients must be integers in the range [0, p)")
return cls(p, [PrimeField(p, coefficient) for coefficient in coefficients])
def __len__(self) -> int:
return len(self.coefficients)
def degree(self) -> int:
return len(self.coefficients) - 1
def evaluate(self, x: PrimeField) -> PrimeField:
if x.p != self.p:
raise ValueError("x must be in the same field as the polynomial")
return sum([(x ** i) * coefficient for i, coefficient in enumerate(self.coefficients)], PrimeField(self.p, 0))
def padding_coefficients(self, degree: int) -> None:
if degree < self.degree():
raise ValueError("degree must be greater than or equal to the current degree")
self.coefficients += [PrimeField(self.p, 0) for _ in range(degree - self.degree())]
def remove_leading_zero_coefficients(self) -> None:
while self.degree() > 0 and self.coefficients[self.degree()].value == 0:
self.coefficients.pop()
def field_check(func):
def wrapper(self: 'Polynomial', other: 'Polynomial') -> 'Polynomial':
if self.p != other.p:
raise ValueError("Fields must have the same prime modulus")
return func(self, other)
return wrapper
def is_constant(self) -> bool:
return self.degree() == 0
def next_value(self) -> 'Polynomial':
# function enumerate all possible polynomials, degree may increase by 1
new_coefficients = self.coefficients.copy()
# do list addition
pt=0
new_coefficients[pt] = new_coefficients[pt].next_value()
while pt < self.degree() and new_coefficients[pt] == PrimeField(self.p, 0):
pt += 1
new_coefficients[pt] = new_coefficients[pt].next_value()
if pt == self.degree():
new_coefficients.append(PrimeField(self.p, 1))
return Polynomial(self.p, new_coefficients)
def is_irreducible(self) -> bool:
# brute force check all possible divisors
if self.is_constant():
return False
# start from first non-constant coefficient
divisor = self.from_integers(self.p, [0,1])
while divisor.degree() < self.degree():
# debug
# print(f"{self}, enumerate divisor: {divisor.as_integers()}")
if self % divisor == self.from_integers(self.p, [0]):
# debug
# print(f"divisor: {divisor}, self: {self}")
return False
divisor = divisor.next_value()
return True
@field_check
def __add__(self, other: 'Polynomial') -> 'Polynomial':
padding_degree = max(self.degree(), other.degree())
self.padding_coefficients(padding_degree)
other.padding_coefficients(padding_degree)
new_coefficients = [self.coefficients[i] + other.coefficients[i] for i in range(padding_degree + 1)]
return Polynomial(self.p, new_coefficients)
@field_check
def __sub__(self, other: 'Polynomial') -> 'Polynomial':
padding_degree = max(self.degree(), other.degree())
self.padding_coefficients(padding_degree)
other.padding_coefficients(padding_degree)
new_coefficients = [self.coefficients[i] - other.coefficients[i] for i in range(padding_degree + 1)]
return Polynomial(self.p, new_coefficients)
@field_check
def __mul__(self, other: 'Polynomial') -> 'Polynomial':
new_coefficients = [PrimeField(self.p, 0) for _ in range(self.degree() + other.degree() + 1)]
for i in range(self.degree() + 1):
for j in range(other.degree() + 1):
new_coefficients[i + j] += self.coefficients[i] * other.coefficients[j]
return Polynomial(self.p, new_coefficients)
def __long_division__(self, other: 'Polynomial') -> 'Polynomial':
if self.degree() < other.degree():
return self.from_integers(self.p, [0]), self
quotient = self.from_integers(self.p, [0])
remainder = self
while remainder.degree() != 0 and remainder.degree() >= other.degree():
# debug
# print(f"remainder: {remainder}, remainder degree: {remainder.degree()}, other: {other}, other degree: {other.degree()}")
# reduce to primitive operation
division_result = (remainder.coefficients[remainder.degree()] / other.coefficients[other.degree()]).value
division_polynomial = self.from_integers(self.p,[0]* (remainder.degree() - other.degree()) + [division_result])
quotient += division_polynomial
# degree automatically adjusted
remainder = remainder - (division_polynomial * other)
return quotient, remainder
@field_check
def __truediv__(self, other: 'Polynomial') -> 'Polynomial':
return Polynomial(self.p, self.__long_division__(other)[0].coefficients)
@field_check
def __mod__(self, other: 'Polynomial') -> 'Polynomial':
return Polynomial(self.p, self.__long_division__(other)[1].coefficients)
def __pow__(self, other: int) -> 'Polynomial':
# you many need better algorithm to speed up this operation
if other == 0:
return Polynomial(self.p, [PrimeField(self.p, 1)])
if other == 1:
return self
# fast exponentiation
if other % 2 == 0:
return (self * self) ** (other // 2)
return self * (self * self) ** ((other - 1) // 2)
@field_check
def __eq__(self, other: 'Polynomial') -> bool:
return self.degree() == other.degree() and all(self.coefficients[i] == other.coefficients[i] for i in range(self.degree() + 1))
@field_check
def __ne__(self, other: 'Polynomial') -> bool:
return self.degree() != other.degree() or any(self.coefficients[i] != other.coefficients[i] for i in range(self.degree() + 1))
def __str__(self) -> str:
string_arr = [f"{coefficient.value}x^{i}" for i, coefficient in enumerate(self.coefficients) if coefficient.value != 0]
return f"Polynomial over GF({self.p}): {' + '.join(string_arr)}"
def as_integers(self) -> list[int]:
return [coefficient.value for coefficient in self.coefficients]
def as_number(self) -> int:
return sum([coefficient.value * self.p ** i for i, coefficient in enumerate(self.coefficients)])Finite fields
class FiniteField():
def __init__(self, p: int, n: int = 1, value: Polynomial = None, irreducible_polynomial: Polynomial = None):
# set default value to zero polynomial
if value is None:
value = Polynomial.from_integers(p, [0])
if value.degree() >= n:
raise ValueError("Value must be a polynomial of degree less than n")
if not utils.prime(p):
raise ValueError("p must be a prime number")
if n<1:
raise ValueError("n must be non-negative")
# auto set irreducible polynomial
if irreducible_polynomial is not None:
if not irreducible_polynomial.is_irreducible():
raise ValueError("Irreducible polynomial is not irreducible")
else:
irreducible_polynomial = Polynomial.from_integers(p, [0]*(n) + [1])
while not irreducible_polynomial.is_irreducible():
irreducible_polynomial = irreducible_polynomial.next_value()
self.p = p
self.n = n
self.value = value
self.irreducible_polynomial = irreducible_polynomial
@classmethod
def from_integers(cls, p: int, n: int, coefficients: list[int], irreducible_polynomial: Polynomial = None) -> 'FiniteField':
return cls(p, n, Polynomial.from_integers(p, coefficients), irreducible_polynomial)
def additive_inverse(self) -> 'FiniteField':
coefficients = [-coefficient for coefficient in self.value.coefficients]
return FiniteField(self.p, self.n, Polynomial(self.p, coefficients), self.irreducible_polynomial)
def multiplicative_inverse(self) -> 'FiniteField':
# via Fermat's little theorem
return FiniteField(self.p, self.n, self.value ** ((self.p**self.n) - 2) % self.irreducible_polynomial, self.irreducible_polynomial)
def get_subfield(self) -> list['FiniteField']:
subfield = [
FiniteField(self.p, self.n, Polynomial.from_integers(self.p, [0]), self.irreducible_polynomial),
FiniteField(self.p, self.n, Polynomial.from_integers(self.p, [1]), self.irreducible_polynomial)
]
current_element = self
for _ in range(0, (self.p**self.n) - 1):
if current_element in subfield:
break
subfield.append(current_element)
current_element = current_element * self
return subfield
def is_primitive(self) -> bool:
# check if the element is a primitive element from definition
subfield = self.get_subfield()
return len(subfield) == (self.p**self.n)
def next_value(self) -> 'FiniteField':
new_value = self.value.next_value()
# do modulo over n
while new_value.degree() >= self.n:
new_value = new_value % self.irreducible_polynomial
return FiniteField(self.p, self.n, new_value, self.irreducible_polynomial)
def field_property_check(func):
def wrapper(self: 'FiniteField', other: 'FiniteField') -> 'FiniteField':
if self.n != other.n:
raise ValueError("Fields must have the same degree")
if self.p != other.p:
raise ValueError("Fields must have the same prime modulus")
if self.irreducible_polynomial != other.irreducible_polynomial:
raise ValueError("Irreducible polynomials must be the same")
return func(self, other)
return wrapper
@field_property_check
def __add__(self, other: 'FiniteField') -> 'FiniteField':
return FiniteField(self.p, self.n, (self.value + other.value)%self.irreducible_polynomial, self.irreducible_polynomial)
@field_property_check
def __sub__(self, other: 'FiniteField') -> 'FiniteField':
return FiniteField(self.p, self.n, (self.value + other.additive_inverse()).value%self.irreducible_polynomial, self.irreducible_polynomial)
@field_property_check
def __mul__(self, other: 'FiniteField') -> 'FiniteField':
return FiniteField(self.p, self.n, (self.value * other.value)%self.irreducible_polynomial, self.irreducible_polynomial)
@field_property_check
def __truediv__(self, other: 'FiniteField') -> 'FiniteField':
return FiniteField(self.p, self.n, (self.value * other.multiplicative_inverse()).value%self.irreducible_polynomial, self.irreducible_polynomial)
@field_property_check
def __eq__(self, other: 'FiniteField') -> bool:
return self.value == other.value
@field_property_check
def __ne__(self, other: 'FiniteField') -> bool:
return self.value != other.value
def __str__(self) -> str:
return f"FiniteField over GF({self.p}) of degree {self.n}: {self.value}"
def as_vector(self) -> list[int]:
return [coefficient.value for coefficient in self.value.coefficients]
def as_number(self) -> int:
return self.value.as_number()
def as_polynomial(self) -> Polynomial:
return self.value
Linear codes
Local recoverable codes
Last updated on