Skip to Content
CSE5313CSE5313 Coding and information theory for data science (Recitation 11)

CSE5313 Coding and information theory for data science (Recitation 10)

Question 5

Prove the minimum distance of Reed-Muller code RM(r,m)RM(r,m) is 2mr2^{m-r}.

n=2mn=2^m.

Recall that the definition of RM code is:

RM(r,m)={(f(α1),,f(α2m))αiF2m,degfr}\operatorname{RM}(r,m)=\left\{(f(\alpha_1),\ldots,f(\alpha_2^m))|\alpha_i\in \mathbb{F}_2^m,\deg f\leq r\right\}

Example of RM code

Let r=0r=0, it is the repetition code.

dimRM(r,m)=i=0r(mi)\dim \operatorname{RM}(r,m)=\sum_{i=0}^{r}\binom{m}{i}.

Here r=0r=0, so dimRM(0,m)=1\dim \operatorname{RM}(0,m)=1.

So the minimum distance of RM(0,m)RM(0,m) is 2m0=n2^{m-0}=n.


Let r=mr=m,

then dimRM(r,m)=i=0r(mi)=2m\dim \operatorname{RM}(r,m)=\sum_{i=0}^{r}\binom{m}{i}=2^m. (binomial theorem)

So the generator matrix is n×nn\times n

So the minimum distance of RM(m,m)RM(m,m) is 2mm=12^{m-m}=1.

Then we can do the induction on rr.

Assume the minimum distance of RM(r,m)RM(r',m') is 2mr2^{m'-r'} for all 0rr0\leq r'\leq r, rm<m1r'\leq m'<m-1.

Then we need to show that the minimum distance of RM(r,m)RM(r,m) is 2mr2^{m-r}.

Proof

Recall that the polynomial p(x1,x2,,xm)p(x_1,x_2,\ldots,x_m) can be written as p(x1,x2,,xm)=S[m],SrfsXsp(x_1,x_2,\ldots,x_m)=\sum_{S\subseteq [m],|S|\leq r}f_s X_s, where fsF2f_s\in \mathbb{F}_2, the monomial Xs=iSxiX_s=\prod_{i\in S}x_i.

Every monomial f(x1,x2,,xm)f(x_1,x_2,\ldots,x_m) can be written as

p(x1,x2,,xm)=S[m],SrfsXs=g(x1,x2,,xm1)+xmh(x1,x2,,xm1)\begin{aligned} p(x_1,x_2,\ldots,x_m)&=\sum_{S\subseteq [m],|S|\leq r}f_s X_s\\ &=g(x_1,x_2,\ldots,x_{m-1})+x_m h(x_1,x_2,\ldots,x_{m-1})\\ \end{aligned}

So g(x1,x2,,xm1)g(x_1,x_2,\ldots,x_{m-1}) has degree at most rr and does not contain xmx_m.

And xmh(x1,x2,,xm1)x_m h(x_1,x_2,\ldots,x_{m-1}) has degree at most r1r-1 and contains xmx_m.

Note that the codeword of RM(r,m)RM(r,m) is the truth table of some monomial evaluated at all 2m2^m αiF2m\alpha_i\in \mathbb{F}_2^m.

And the minimum distance of RM(r,m)RM(r,m) is the minimum hamming weight for linear code, which is the number of αi\alpha_i such that f(αi)=1f(\alpha_i)=1

Then we can defined the weight of ff to be all αi\alpha_i such that f(αi)=1f(\alpha_i)=1.

wt(f)={αif(αi)=1}\operatorname{wt}(f)=\{\alpha_i|f(\alpha_i)=1\}

Note that g(x1,x2,,xm1)g(x_1,x_2,\ldots,x_{m-1}) is a RM(r,m1)RM(r,m-1) and h(x1,x2,,xm1)h(x_1,x_2,\ldots,x_{m-1}) is a RM(r1,m1)RM(r-1,m-1).

If xm=0x_m=0, then f(αi)=g(αi)f(\alpha_i)=g(\alpha_i). If xm=1x_m=1, then f(αi)=g(αi)+h(αi)f(\alpha_i)=g(\alpha_i)+h(\alpha_i).

So wt(f)=wt(g)wt(g+h)\operatorname{wt}(f)=\operatorname{wt}(g)\cup\operatorname{wt}(g+h).

Note that wt(g+h)\operatorname{wt}(g+h) is the number of αi\alpha_i such that g(αi)+h(αi)=1g(\alpha_i)+h(\alpha_i)=1, which is XOR in binary field.

So wt(g+h)=(wt(g)wt(h))(wt(h)wt(g))\operatorname{wt}(g+h)=(\operatorname{wt}(g)\setminus\operatorname{wt}(h))\cup (\operatorname{wt}(h)\setminus\operatorname{wt}(g)).

So

wt(f)=wt(g)+wt(g+h)=wt(g)+wt(g)wt(h)+wt(h)wt(g)=wt(h)+2wt(h)wt(g)\begin{aligned} |\operatorname{wt}(f)|&=|\operatorname{wt}(g)|+|\operatorname{wt}(g+h)|\\ &=|\operatorname{wt}(g)|+|\operatorname{wt}(g)\setminus\operatorname{wt}(h)|+|\operatorname{wt}(h)\setminus\operatorname{wt}(g)|\\ &=|\operatorname{wt}(h)|+2|\operatorname{wt}(h)\setminus\operatorname{wt}(g)|\\ \end{aligned}

Note hh is in RM(r1,m1)\operatorname{RM}(r-1,m-1), so wt(h)=2mr|\operatorname{wt}(h)|=2^{m-r}

Theorem for Reed-Muller code

RM(r,m)=RM(mr1,m)\operatorname{RM}(r,m)^\perp=\operatorname{RM}(m-r-1,m)

Let C=[n,k,d]q\mathcal{C}=[n,k,d]_q.

The dual code of C\mathcal{C} is C={xFqnxc=0 for all cC}\mathcal{C}^\perp=\{x\in \mathbb{F}^n_q|xc^\top=0\text{ for all }c\in \mathcal{C}\}.

Example

RM(0,m)=RM(m1,m)\operatorname{RM}(0,m)^\perp=\operatorname{RM}(m-1,m).

and RM(0,m)\operatorname{RM}(0,m) is the repetition code.

which is the dual of the parity code RM(m1,m)\operatorname{RM}(m-1,m).

Lemma for sum of binary product

For A[m]={1,2,,m}A\subseteq [m]=\{1,2,\ldots,m\}, let XA=iAxiX^A=\prod_{i\in A}x_i, we can defined the inner product XA,XB=x{0,1}miAxiiBxi=x{0,1}miABxi\langle X^A,X^B\rangle=\sum_{x\in \{0,1\}^m}\prod_{i\in A}x_i\prod_{i\in B}x_i=\sum_{x\in \{0,1\}^m}\prod_{i\in A\cup B}x_i.

So XA,XB={1if AB=[m]0otherwise\langle X^A,X^B\rangle=\begin{cases} 1 & \text{if }A\cup B=[m]\\ 0 & \text{otherwise} \end{cases}

because iABxi=1\prod_{i\in A\cup B}x_i=1 if every coordinate in ABA\cup B is 1.

So the number of such x{0,1}mx\in \{0,1\}^m is 2mAB2^{m-|A\cup B|}.

This implies that XA,XB=1\langle X^A,X^B\rangle=1 if and only if mAB=0m-|A\cup B|=0.

Recall that RM(r,m)\operatorname{RM}(r,m) is the evaluation of f=B[m],BrβXBf=\sum_{B\subseteq [m],|B|\leq r}\beta X^B at all βi{0,1}m\beta_i\in \{0,1\}^m.

RM(mr1,m)\operatorname{RM}(m-r-1,m) is the evaluation of h=A[m],Amr1αXAh=\sum_{A\subseteq [m],|A|\leq m-r-1}\alpha X^A at all αi{0,1}m\alpha_i \in \{0,1\}^m.

By linearity of inner product, we have

f,h=B[m],BrβXB,A[m],Amr1αXA=B[m],BrA[m],Amr1βαXB,XA\begin{aligned} \langle f,h\rangle&=\langle \sum_{B\subseteq [m],|B|\leq r}\beta X^B,\sum_{A\subseteq [m],|A|\leq m-r-1}\alpha X^A\rangle\\ &=\sum_{B\subseteq [m],|B|\leq r}\sum_{A\subseteq [m],|A|\leq m-r-1}\beta\alpha\langle X^B,X^A\rangle\\ \end{aligned}

Because ABA+Bmr1+r=m1|A\cup B|\leq |A|+|B|\leq m-r-1+r=m-1.

So XB,XA=0\langle X^B,X^A\rangle=0 since m1<mm-1<m

So f,h=0\langle f,h\rangle=0.

Proof for the theorem

Recall that the dual code of RM(r,m)={xF2mxc=0 for all cRM(r,m)}\operatorname{RM}(r,m)^\perp=\{x\in \mathbb{F}_2^m|xc^\top=0\text{ for all }c\in \operatorname{RM}(r,m)\}.

So RM(mr1,m)RM(r,m)\operatorname{RM}(m-r-1,m)\subseteq \operatorname{RM}(r,m)^\perp.

So the last step is the dimension check.

Since dimRM(r,m)=i=0r(mi)\dim \operatorname{RM}(r,m)=\sum_{i=0}^{r}\binom{m}{i} and the dimension of the dual code is 2mdimRM(r,m)=i=0m(mi)i=0r(mi)=i=r+1m(mi)2^m-\dim \operatorname{RM}(r,m)=\sum_{i=0}^{m}\binom{m}{i}-\sum_{i=0}^{r}\binom{m}{i}=\sum_{i=r+1}^{m}\binom{m}{i}.

Since (mi)=(mmi)\binom{m}{i}=\binom{m}{m-i}, we have i=r+1m(mi)=i=r+1m(mmi)=i=0mr1(mi)\sum_{i=r+1}^{m}\binom{m}{i}=\sum_{i=r+1}^{m}\binom{m}{m-i}=\sum_{i=0}^{m-r-1}\binom{m}{i}.

This is exactly the dimension of RM(mr1,m)\operatorname{RM}(m-r-1,m).

Last updated on